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In this study a special attention is given to the research of the magnitude of radiation power of two
electrons moving one by one in vacuum in non-relativistic case in dependence on their location in a
spiral. Synchrotron radiation spectra for a single and two electrons in relativistic case are obtained and
analyzed.
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1. INTRODUCTION

Studies of the radiation spectrum of electrons moving in magnetic fields in vacuum are important from
the point of view of their applications in electronics, astrophysics, plasma physics, etc. [1-4].

A question requiring further investigations is the coherence of synchrotron radiation [1, 5-12]. At
moving an electron beam through a spiral undulator a laser radiation takes place [13]. The phenomena take
the place in free-electron lasers were studied in paper [14].

Using the exact integral relationships for the spectral distribution of radiation power of two electrons
moving one by one along a spiral in vacuum the structure of the synchrotron radiation spectrum was
investigated by means of analytical and numerical methods. Special attention is given to the research of the
dependence of radiation power magnitude of two electrons moving one by one in dependence on their
location in a spiral in non-relativistic case. Synchrotron radiation spectrum for a single and two electrons in
relativistic case is obtained and analyzed.

2. SPECTRAL DISTRIBUTION OF THE RADIATION POWER OF TWO ELECTRONS
MOVING ALONG A SPIRAL IN VACUUM

The law of motion and the velocity of the I™ electron in magnetic field are given by the expressions
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Here r, =V 5!, w, =ec’B*E™, E =c4/ p? +mZc? , the magnetic induction vector B*|0Z, V,and v, are

the components of the velocity, p and E are the momentum and energy of the electron, eand m, are its

charge and rest mass, respectively.
The time-averaged radiation power of two electrons moving one by one in vacuum is presented in [7]:
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The coherence factor S, (w) of two electrons is defined as
S, (w)=2+2cos(wAt,,) ()

Here At, =At, —At, is the time shift of the electrons moving along a spiral. The analogous expression for

the coherence factor was investigated by Bolotovskii [15].
From relationships (2) and (3) after some transformations the contributions of separate harmonics to
the averaged radiation power can be written as [7]:
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where q=Y2%sing, J,(q) and J:(q) are the Bessel function with integer index and its derivative,
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respectively.
Each harmonic is a set of the frequencies, which are the solution of the equation
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The total radiation power emitted by a single electron moving in a spiral in vacuum is determined,
according to [16], as
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Our high accuracy numerical calculations of the radiation power spectral distribution were performed
at B*' =107 T and ¢ =0.2997925 [10° m/s.

where w, =

3. SYNCHROTRON RADIATION SPECTRUM OF TWO ELECTRONS
MOVING IN A SPIRAL IN NON-RELATIVISTIC CASE

For the velocities components V_ =0.2 10° m/s and VHvac =0.210° m/s the radiation power spectral

distributions of two electrons moving one by one in vacuum depending on their location along a spiral are
shown in Figs. 1-5 (curves 2-7).

It is interesting to compare the radiation power spectral distribution for two electrons with the radiation
power spectral distribution of a single electron (curve 1 in Fig.1). The radiation power of the single electron

in vacuum P, =0.7131107W calculated according to relationship (7) is in good agreement to the power

vacl —
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P =0.722107 W determined after integration according to relationships (2) and (3). For a single

vacl

electron we have the coherence factor S, =1.
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Fig. 1. Spectral distribution of radiation power for the electrons moving in a spiral in non-relativistic case at B =107 T,

V. =0.2010%mis, Vi, =0.2000°mis, ry; =1.142m, wy; =0.1751010° radss, j=1,2,...,10.

Ovac
Curve 1 — the radiation spectrum of a single electron at Poy =0.7130107%*w, P\,'Qél =0.7220107* w,

Vi

Curve 2 — two electrons at At2, =0.000171/ Gy, and Pigéz =0.2888[10*w,

Vi

Curve 3 — two electrons at AtS, =11/ wyg and Pyme; =0.502[10 2 w.

For the time shift At% =0.0001m/wy, (curve 2 in Fig. 1) the coherence factor S,(w)04 and two
electrons radiate as a charged particle with the charge 2e and the rest mass 2m, i.e. by a factor of four
more than a single electron.

For the time shift Atfz =11/ wy; (curve 3 in Fig. 1) the power of radiation of two electrons is by an
order of magnitude lower than that of a single electron. It corresponds to a half of the period of rotation.
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Fig. 2. Spectral distribution of radiation power for the electrons moving in a spiral in non-relativistic case. Curve 1 — the radiation
int

spectrum of a single electron. Curve 4 — two electrons at Aty, =10TU/ &y, and P, =0.184810 2w,
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Fig. 3. Spectral distribution of radiation power for two electrons moving in a spiral in non-relativistic case. Curve 5 —
A, =307 wys and P =0.1525010 % w.

Vi

At the basic frequency «y,; for the time shift 2im/wy; (i=4, 5,...) the radiation power spectral

distribution of two electrons takes the maximum value (see curves 4 and 5 in Figs 2 and 3).
At the basic frequency wy; the function of the radiation power spectral distribution of two electrons is

equal to zero if the time shift between them in a spiral is equal to (2i +1)n/m0j (i=0, 1, 2,...) (see Figs 1, 4
and 5).
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Fig. 4. Spectral distribution of radiation power for two electrons moving in a spiral in non-relativistic case. Curve 6 —

Aty =157/ Wy and P, =0.1684 10 2 w.
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Fig. 5. Spectral distribution of radiation power for two electrons moving in a spiral in non-relativistic case. Curve 7 —

At, =357/ 6y, and P™ . =0.1205 10 % w.
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Fig. 6. Radiation power in dependence on time shift between two electrons moving in a spiral in non-relativistic case at
VDvac =0.2 108 m/s and V”\,ac =0.2[10° m/s. Radiation power of a single electron (curve 8). Radiation power of two separate

electrons (curve 9). Radiation power of two electrons moves one by one depending on their location in a spiral (curve 10).

The magnitude of the radiation power of two electrons moving one by one in dependence on their
location in a spiral in non-relativistic case is presented in Fig. 6. With increasing time shift At;, the radiation
power of two electrons hon-monotonously tends to the double radiation power of a single electron.

4. SYNCHROTRON RADIATION SPECTRUM OF TWO ELECTRONS
MOVING IN A SPIRAL IN RELATIVISTIC CASE

The influence of the Doppler effect determines the band’s boundaries of separate harmonics in the
radiation spectrum of two electrons moving one by one along a spiral in a vacuum. In relativistic case for the

velocities components V_ =0.2400°m/s and anac =0.15020%8 m/s the radiation power spectral
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distributions of two electrons in vacuum depending on their location along a spiral are shown in Figs 7-14
(curves 12 and 13, 15 to 18).

The radiation power of the single electron in relativistic case in vacuum PY, =0.285210W

calculated according to relationship (7) is in good agreement to the power PV‘Q;H:O.2092D10'21W
determined after integration according to relationships (2) and (3).
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Fig. 7. Spectral distribution of synchrotron radiation power of the electrons moving in a spiral in relativistic case at low harmonics at
B* =107 T, Vo, =0.24010° m/s and V5 =0.1510° mis, oy =0.10510° radss ry; =22.85m, j=11,12,....,18.

Curve 11 — a single electron with PJ;‘QM =0.2092107*" W, curve 12 — two electrons moving one by one at At2 = 0.0017T/ &y,
and P,ft;, =0.8369 10 w.

vac 12

For the time shifts At2 =0.001/ wy,, (curve 12 in Fig. 7) the coherence factor S,(w)04 and two
electrons in relativistic case radiate as a charged particle with the charge 2e and the rest mass 2m,, i.e. by a

factor of four more than a single electron (P, O4PM™ ).
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Fig. 8. Spectral distribution of synchrotron radiation power of the electrons moving in a spiral in relativistic case at low harmonics at
B =107"T, V.. =0.24110° mys, Vivae =0.15 [10° mis. Curve 11 — a single electron with P, =0.2092 107" w,

curve 13 — two electrons moving one by one in a spiral at Atly =Tt/ wy;3 and Pt . =0.3928 1072 w.
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Fig. 9. Spectral distribution of synchrotron radiation power of the electrons moving in a spiral in relativistic case at higher
harmonics at B®* =107 T, V.. =0.2410° mss, Vivae =0.15 [10° m/s. Curve 14. - a single electron with

int
I:z/au:14

=0.2817 107" W, curve 15 — two electrons moving one by one at Aty; = 000111/ G5 and
Pies =0.1127 107w,

vacls

In the case of uniform location of two electrons along a spiral at the time shift AtjS = /(6 (curve 16
in Fig. 10) we have found that any radiation at the frequencies (2i +1)oo016 (i=0,1,2,...,7,...) is absent.

90
80
70l
60 [
50
40
30
20
10

of MMAAAAJ\AJ\ ——

0 4 8 12 16 20 24 28

u)/ooOj

L W(@)@, (107°W)

16

Fig. 10. Spectral distribution of synchrotron radiation power of two electrons moving in a spiral in relativistic case at higher
harmonics at B =107, V.. =0.2410° m/s and Vivac =0.15 [10° mis. curve 16 — the time shift At;5= Tt/ Gy and

P s =0.5415107 w.
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Fig. 11. Spectral distribution of synchrotron radiation power of two electrons moving in a spiral in relativistic case at higher
harmonics at B™ =10™T, V5, =0.24[10° m/s and V.. =0.1510° ms. curve 17 — the time shift Aty;= 27T/ Gy,; and

P =0.9876 10 w.

For the time shift Atj}=2711/wy,,, (see Figs 11 and 12) the coherence factor is equal to zero at
frequencies (2i +1) by, /2 (i=0,1,2,...) and at these frequencies the radiation is absent.
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Fig. 12. Spectral distribution of synchrotron radiation power of two electrons moving one by one in a spiral at higher harmonics.
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Fig. 13. Spectral distribution of synchrotron radiation power of two electrons moving in a spiral in relativistic case at higher

harmonics at B™ =107 T, V., =0.24[10° m/s and V},, = 0.15[10° m/s, curve 18 — the time shift Aty3=4TU/ Gy, and
Pies =0.7834 11072 w.
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Fig. 14. Spectral distribution of synchrotron radiation power of two electrons moving in a spiral in relativistic case at higher
harmonics

For the time shift At;3=411/wy (See Figs 13 and 14) the coherence factor is equal to zero at
frequencies (2i +1)m)018/4 (i=0,1,2,...) and at these frequencies the radiation is absent.

The Doppler effect determines the band’s boundaries of separate harmonics in the radiation spectra of
two electrons moving one by one along a spiral in a vacuum.
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5. CONCLUSIONS

The Doppler effect determines the band’s boundaries of separate harmonics in the radiation spectra of

two electrons moving one by one along a spiral in a vacuum.

For small time shifts the coherence factor in non-relativistic and in relativistic cases is S, (w) J4.

In the case of uniform location of two electrons along a spiral at the time shift At11§5 =11/lboy16 any

radiation at the frequencies (2i +1)wy, (i=0,1,2,...,7,...) is absent.

With increasing time shift At;, the radiation power of two electrons moving along a spiral in non-

relativistic case non-monotonously tends to the double radiation power of a single charge.

The coherence factor leads to essential changes in the radiation power spectral distribution of two

electrons in dependence on their position in a spiral.
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