ON INFINITE BERNOULLI CONVOLUTIONS

Gheorghită ZBĂGANU

“Gheorghe Mihoc – Caius Iacob” Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy
Casa Academiei Române, Calea 13 Septembrie no. 13, 050711 Bucharest, Romania. E-mail: gheorghitazbaganu@yahoo.ro

Let \((X_n)_{n \geq 0}\) be a sequence of i.i.d. nondegenerate integrable random variables and let \(q \in [0, 1]\). Let \(S(n,q) = X_0 + qX_1 + \ldots + q^nX_n\). If \(|q| < 1\) the sequence \((S(n,q))_{n \geq 0}\) is almost surely convergent to an integrable random variable \(S(q)\) which has a distribution denoted by \(\mu(q)\). Even in the most simple case when \(X_n \sim \text{Binomial}(1, \frac{1}{2})\) behaves mysteriously erratic when \(q \in (\frac{1}{2}, 1)\). We prove that there still exists a regularity, namely

\[
0 < q < \frac{1}{2} \implies \text{Uniform}(0, L)
\]

and

\[
\frac{1}{2} < q < 1 \implies \mu(q) \leq \text{Uniform}(0, L),
\]

where \(1/L = 1 - q\) and “\(\leq\)” is the Choquet convex domination. The problem has a clear financial motivation: if \(q\) is an actualization factor, then \(S(q)\) is the actual value of the infinite sum \(X_0 + X_1 + \ldots\).

1. THE PROBLEM

Let \((X_n)_{n \geq 0}\) be a sequence of i.i.d. random variables and \(S(n,q) = X_0 + qX_1 + \ldots + q^nX_n\), with \(q\) a real number. As

\[
S(n+k,q) - S(n,q) - q^{n+1}S(k-1,q)
\]

(1.1)

(meaning that \((S(n,q))_{n \geq 0}\) is Cauchy in \(L^1\), hence convergent in \(L^1\)). It is easy to check that it is also convergent a.s. since the series \(S(q) = \sum_{n=0}^{\infty} q^nX_n\) converges a.s. If \(X_n \in L^\infty\), the convergence is even uniform.

The real problem is to compute the distribution of \(S(q)\). Let \(F_q\) and \(F_{n,q}\) be the distribution functions of \(S(q)\) and \(S(n,q)\). Let also \(\nu\) be the distribution of \(X_n\) and \(\mu(q), \mu(n,q)\) the distributions of \(S(q)\) and \(S(n,q)\).

If \(|X_n| \leq M\) a.s. (that is, \(X_n\) are essentially bounded), it is easy to see that
\[S(n, q) - \frac{|q|^{n+1}M}{1-|q|} \leq S(q) \leq S(n, q) + \frac{|q|^{n+1}M}{1-|q|} \]

Therefore, a coarse evaluation of \(F_q \) would be

\[F_{n,q}(x - \frac{|q|^{n+1}M}{1-|q|}) \leq F_q(x) \leq F_{n,q}(x + \frac{|q|^{n+1}M}{1-|q|}) \]

which, for great \(n \), is good enough for continuity points of \(F_{n,q} \).

Anyway, estimation (1.4) is useless if we want to know the type of the distribution \(\mu(q) \). According to the Lebesgue – Nikodym theorem any probability distribution \(\mu \) on the real line can be written as a mixture

\[\mu = \alpha \mu_d + \beta \mu_{SC} + \gamma \mu_{AC} \]

where \(\alpha, \beta, \gamma \geq 0, \alpha + \beta + \gamma + 1, \mu_d \) is a discrete distribution, \(\mu_{SC} \) is continuous but singular (i.e. there exists a Borel set \(A \subset \mathbb{R} \) such that \(\lambda(A) = 0 \) but \(\mu_{SC}(A) = 1 \); here \(\lambda \) is the Lebesgue measure on the real line) and, finally, \(\mu_{AC} \) is absolutely continuous with respect to \(\lambda \).

Definition. A distribution of the form (1.5) is called a distribution of type \((\alpha, \beta, \gamma)\). A distribution of type \((1,0,0)\) or \((0,1,0)\) or \((0,0,1)\) is called pure, otherwise it is called a mixture.

A remarkable result of Jessen and Wintner [3] (see [5], page 64, Theorem 3.7.7) is the so called purity theorem (see [2]).

Purity Theorem. Let \((X_n)_{n \geq 0}\) be a sequence of independent random variables such that the sequence \((X_0 + \ldots + X_n)_n\) is convergent in distribution to some real random variable \(S \). Then the distribution of \(S \) is pure.

In our one case can say more. The distribution of \(S(q) \) is always continuous (see [5], page 65). Is it absolutely continuous? If \(v \) is absolutely continuous, then it is clear that \(\mu(q) \) is absolutely continuous, too. The reason is that the convolution of \(v \) and any other probability distribution \(\sigma \) is absolutely continuous: if \(g \) is the density of \(v \), then

\[h(x) = \int g(x-y) d\sigma(y) \]

is a version for the density of \(v*\sigma \).

If \(v \) is continuous, then it is also easy to see that \(S(q) \) has a continuous distribution, too. For, if \(F \) is the distribution function of \(v \), the distribution function \(G \) of \(v*\sigma \) is given by

\[G(x) = \int F(x-y) d\sigma(y) \]

that is, it is continuous, too.

A delicate problem is when \(v \) is discrete. This time is by no means obvious why \(\mu(q) \) should be continuous. It is proved in [5], page 85 that this is indeed the case. The most difficult question is to give a criterion to decide if \(\mu(q) \) is absolutely continuous.

The simplest case is when \(v = \text{Binomial}(1, \frac{1}{2}) \). Now, the distribution of \(S(q) \) is called an infinite Bernoulli convolution (see [2], [3], [4], [5], [7], [8]). It is known that if \(|q| < \frac{1}{2} \) then \(\mu(q) \) is singular (in this case this is almost obvious, since the support of \(\mu(q) \) is negligible), that if \(q = \frac{1}{2} \) then \(\mu(q) = \text{Uniform}(0,2) \), and if \(q \in (\frac{1}{2},1) \setminus M \) then \(\mu(q) \) is absolutely continuous, where \(M \subset (\frac{1}{2}, 1) \) is a negligible set (see [7]). Little is known about the set \(M \). We think that \(M \) is countable. The only \(q \) from \(M \) which is positively known (see [7]) is \(q = \left(\sqrt{5} - 1\right)/2 \), i.e. the solution of the equation \(q + q^2 = 1 \). If \(q \in (-1, -\frac{1}{2}) \), the situation is similar: we can work with the random variables \(Y_n = 2X_n - 1 \) instead of \(X_n \). They are symmetrical, therefore \(aY_n \) and \(-aY_n \) have the same distribution.

Trying to approximate the distribution functions \(F_q \) by \(F_{n,q} \) on the computer we remarked an intriguing regularity of the distribution functions \(F_{n,q} \) : compared with the corresponding uniform distribution function \(G_q(x) = x/L_m \) on \([0, L_m]\) (here \(L_m = 1 + q + \ldots + q^n \)) they seemed to behave as follows:
- for $q < 1/2 : F_{n,q}(x) > G_{n}(x)$ if $x \in (0, L/2)$ and $F_{n,q}(x) < G_{n}(x)$ if $x \in (L/2, 1)$
- for $q > 1/2 : F_{n,q}(x) < G_{n}(x)$ if $x \in (0, L/2)$ and $F_{n,q}(x) > G_{n}(x)$ if $x \in (L/2, 1)$.

This is remarkable because intersection at one point only of two distribution functions is the Karlin–Novikov criterion for convex domination (see [9] or [10]).

Definition. Let ν and σ be two probabilities on the real line. We say that ν is convex dominated by σ and write $\nu \preceq_{\sigma} \sigma$ if \[\int ud\nu \leq \int ud\sigma \] for all convex functions $u : \mathbb{R} \to \mathbb{R}$ for which the integrals do exist.

If μ and ν have the same finite expectation and their distribution functions F_{σ} and F_{σ} have the property that there exists x_{0} such that $x < x_{0} \Rightarrow F_{\sigma}(x) \leq F_{\sigma}(x)$ and $x \geq x_{0} \Rightarrow F_{\sigma}(x) \geq F_{\sigma}(x)$, then $\nu \preceq_{\sigma} \sigma$. This is the Karlin–Novikov criterion. Unfortunately, it is not equivalent to convex domination.

We intend to prove a weaker result than our empirical remark, namely

Theorem. Let $L = 1 + q + q^{2} + \ldots$

If $q < 1/2$ then $\mu(q) \preceq_{\sigma} \text{Uniform}(0,L)$

If $q \in (1/2, 1)$ then $\text{Uniform}(0,L) \prec_{\sigma} \mu(q)$.

2. A MAJORIZATION LEMMA

If $A \subset \mathbb{R}$ is a finite set, we shall denote by $U(A)$ the uniform distribution on A, precisely

\[U(A) = \frac{1}{|A|} \sum_{a \in A} \varepsilon_{a}, \] \hspace{1cm} (2.1)

where $\varepsilon_{a}(B) = 1_{\delta}(a)$ is the Dirac probability at a. Notice that if $|A| = |B| = n$, $A = \{a_{0} < a_{1} < \ldots < a_{n}\}$ and $B = \{b_{0} < b_{1} < \ldots < b_{n}\}$, then the definition of convex domination becomes

\[U(A) \preceq_{\sigma} U(B) \iff u(a_{0}) + u(a_{1}) + \ldots + u(a_{n}) \leq u(b_{0}) + u(b_{1}) + \ldots + u(b_{n}) \] \hspace{1cm} (2.2)

for any convex function u. Letting $u(x) = x$ and $u(x) = -x$ we see that $a_{0} + a_{1} + \ldots + a_{n} = b_{0} + b_{1} + \ldots + b_{n}$. It is well known (and easy to check) that the second inequality is equivalent to

\[|x - a_{0}| + |x - a_{1}| + \ldots + |x - a_{n}| \leq |x - b_{0}| + |x - b_{1}| + \ldots + |x - b_{n}| \quad \forall x \in \mathbb{R}, \] \hspace{1cm} (2.3)

It can be proved (see for instance [1] or [6]) that inequality (2.3) is equivalent to

\[a_{0} \geq b_{0}, a_{0} + a_{1} \geq b_{0} + b_{1}, \ldots, a_{0} + \ldots + a_{n-1} \geq b_{0} + \ldots + b_{n-1}, a_{0} + a_{1} + \ldots + a_{n} = b_{0} + b_{1} + \ldots + b_{n} \] \hspace{1cm} (2.4)

(Sometimes this is called Karamata’s theorem.) Inequality (2.4) is then written $a \prec b$ (b majorizes a). It is important that in (2.4) we do not need that the numbers $(a_{k})_{n}$ and $(b_{k})_{n}$ be all distinct. A result we need is

Karamata’s theorem. Let $a_{0} \leq a_{1} \leq \ldots \leq a_{n}$ and $b_{0} \leq b_{1} \leq \ldots \leq b_{n}$. Let $a = (a_{k})_{n}$ and $b = (b_{k})_{n}$. Then

\[\sum_{k=0}^{n} \varepsilon_{a_{k}} \prec_{\sigma} \sum_{k=0}^{n} \varepsilon_{b_{k}} \iff a \prec b \] \hspace{1cm} (2.5)

The proof of our result will rely on

Lemma 2.1. Let $q > 0, n \geq 1, \alpha = (n+q)/(2n+1)$. Then

\[q \in (1/2, n+1) \quad \Rightarrow \quad U(\{0,1,\ldots,n\}) \ast U(\{0,q\}) \prec_{\sigma} U(\{0,\alpha,2\alpha,\ldots,2n+1\}) \] \hspace{1cm} (2.6)

\[q \in (0, 1/2) \cup (n+1, \infty) \Rightarrow U(\{0,\alpha,2\alpha,\ldots,2n+1\}) \prec_{\sigma} U(\{0,1,\ldots,n\}) \ast U(\{0,q\}) \] \hspace{1cm} (2.7)
Notice that \((2n+2) U(\{0,1,\ldots,n\}) * U(\{0,q\}) = \varepsilon_0 + \varepsilon_q + \varepsilon_1 + \varepsilon_{1+q} + \ldots + \varepsilon_n + \varepsilon_{n+q}\) \(\text{(2.8)}\)

Let us arrange ascendingly the numbers \(0,q, 1, 1+q, \ldots, n, n+q\) in the vector \(a = (a_i)_{0 \leq i \leq 2n+1}\) from \(\mathbb{R}^{2n+2}\). Consider also the vector \(b \in \mathbb{R}^{2n+2}\) defined by \(b = (i\alpha)_{0 \leq i \leq 2n+1}. \)

Let \(\Delta_i = (2n+1)(a_0 + a_1 + \ldots + a_i)\) and \(B_i = (2n+1)(b_0 + b_1 + \ldots + b_i)\), \(0 \leq i \leq 2n+1\). Let also \(\Delta_i = A_i - B_i\). Of course \(\Delta_0 = \Delta_{2n+1} = 0\). According to Karamata’s theorem we have to check that

\[q \in (\frac{1}{2}, n+1) \Rightarrow \Delta_i \geq 0 \quad \forall \, 1 \leq i \leq 2n \quad \text{and} \quad q \in (0, \frac{1}{2}) \cup (n+1, \infty) \Rightarrow \Delta_i \leq 0 \quad \forall \, 1 \leq i \leq 2n \] \(\text{(2.9)}\)

In order to make the computations easier, we shall remark the symmetry

\[a_{2n+1-i} + a_i = b_{2n+1-i} + b_i = n+q \] \(\text{(2.10)}\)

which further implies the remarkable equality \(\Delta_i = \Delta_{2n-1-i} \forall \, 1 \leq i \leq 2n\). Consequently, it is enough to prove that

\[q \in (\frac{1}{2}, n+1) \Rightarrow \Delta_i \geq 0 \quad \forall \, 1 \leq i \leq n \quad \text{and} \quad q \in (0, \frac{1}{2}) \cup (n+1, \infty) \Rightarrow \Delta_i \leq 0 \quad \forall \, 1 \leq i \leq n \] \(\text{(2.11)}\)

Case 1. The easiest one: \(q \in (0,1)\). Then \((a_i)_{0 \leq i \leq 2n+1} = (0, q, 1+q, 2+q, \ldots, n, n+q)\). It is easy to check that

\[\Delta_{2i+1} = (2q-1)(i+1)(n-i) \quad \text{and} \quad \Delta_{2i} = (2q-1)(i)(n-i) + 1 \] \(\text{(2.12)}\)

hence (2.9) holds.

Case 2. Another easy case: \(q \in [n,\infty)\). Now, \((a_i)_{0 \leq i \leq 2n+1} = (0, 1, 2, \ldots, n, q, 1+q, 2+q, \ldots, n+q)\), and for \(i \leq n\) the reader may check that

\[2\Delta_i = i(i+1)(n+1-q), \] \(\text{(2.13)}\)

making obvious claim (2.9).

Case 3. \(1 \leq q < n+1\). We have to check that \(\Delta_i \geq 0 \quad \forall \, 1 \leq i \leq n\). Now, we write

\[n = k + m, q = k + \varepsilon, \quad \text{with} \quad k, m \geq 1 \quad \text{and} \quad 0 \leq \varepsilon < 1. \] \(\text{(2.14)}\)

Notice that \((2n+1)\alpha = 2k + m + \varepsilon \) and \((2n+1)(1-\alpha) = m + 1 - \varepsilon\). This case is more difficult because of the ascending order of the numbers \(i, i+q\) which now becomes \((a_i)_{0 \leq i \leq 2n+1} = (0, 1, 2, \ldots, k, k+\varepsilon, k+1+\varepsilon, \ldots, k+2+\varepsilon, k+m, k+m+\varepsilon, k+m+1+\varepsilon, \ldots, k+m+k+\varepsilon)\).

For \(i \leq n\) the rule is

\[a_i = i \quad \forall \, 1 \leq i \leq k, \quad a_k = k, \quad a_{k+1} = k + \varepsilon, \ldots, a_{k+i} = k+i, \quad a_{k+i+1} = k + i + \varepsilon, \ldots \] \(\text{(2.15)}\)

Remark that if \(k + 2i < n = k + m\) (hence \(2i < m\) \(\text{then} \)

\[\delta_i := (2n+1)[(a_{k+i+1} + a_{k+i+2}) - (b_{k+i+1} + b_{k+i+2})] = \frac{(k+1)(k+1-2\varepsilon)(k+1-2\varepsilon)}{2} \] \(\text{(2.16)}\)

(recall that \(k \geq 1 \Rightarrow 2k - 1 + 2\varepsilon \geq 1 + 2\varepsilon\)). On the other hand, as \(\Delta_{k+2i+1} = \Delta_{k+1} + \delta_{0} + \delta_{1} + \ldots + \delta_{i}\), by (2.16), we arrive at

\[\Delta_{k+2i+1} = \Delta_{k+1} + \delta_{0} + \ldots + \delta_{i} = \frac{k(k+1)}{2}(m+1-\varepsilon) + (2k-1+2\varepsilon)(m-i)(i+1) \] \(\text{(2.17)}\)

making obvious that \(\Delta_{k+2i+1} \geq \Delta_{k+1} \geq 0.\) Moreover, as \(k \geq 1, m \geq 2i \) and \(\varepsilon \geq 0\), we have the inequality

\[\Delta_{k+2i+1} \geq \frac{k(k+1)}{2}(m+1-\varepsilon) + (2k-1+2\varepsilon)(m-i)(i+1) = \Delta_{k+1} + i^2 + i \] \(\text{(2.18)}\)

Now, write

\[\Delta_{k+2i} = \Delta_{k+2i-1} + (2n+1)[k+i-(k+2i)\alpha] = \Delta_{k+2i-1} + k(m-2i) + k + i - \varepsilon(k + 2i) \] \(\text{(2.19)}\)

As \(\varepsilon < 1\), we have \(\Delta_{k+2i} \geq \Delta_{k+2i-1} + k(m-2i) + k + i - \varepsilon(k + 2i) \geq \Delta_{k+2i-1} + k(m-2i) - i = \Delta_{k+2i-1} + i \). By (2.18), we see that \(\Delta_{k+2i} \geq \Delta_{k+1} + i\). Consequently, \(\Delta \geq \Delta_{k+1} > 0 \quad \forall \, t = k, k+1, \ldots, n\). This completes the proof.

Actually we shall use an obvious generalization of Lemma 2.1, namely...
Corollary 2.2. Let $N \geq 1$, δ, $r > 0$ and $\alpha = \delta(N+r)/(2N+1)$. Then

$$r \in (\delta/2, N+1) \Rightarrow U(\{0, \delta, \ldots, N\delta\}) * U(\{0, r\delta\}) \prec_{\alpha} U(\{0, \alpha, 2\alpha, \ldots, (2N+1)\alpha\}) \quad (2.19)$$

and

$$q \in (0, \delta/2) \cup (N+1, \infty) \Rightarrow U(\{0, \alpha, 2\alpha, \ldots, (2N+1)\alpha\}) \prec_{\alpha} U(\{0, \delta, \ldots, N\delta\}) * U(\{0, r\delta\}). \quad (2.20)$$

3. THE PROOF OF THE THEOREM

Clearly, the distribution $\mu(n,q)$ can be written as

$$\mu(n,q) = U(\{0,1\}) * U(\{0,q\}) * \ldots * U(\{0,q^n\}) \quad (3.1)$$

Suppose that $q > \delta/2$. According to Lemma 2.1, $\mu(2,q) \prec_{\alpha} U(\{0, \delta, 2\delta, 3\delta\})$ where $3\delta = 1 + q$. Now, we want to apply Corollary 2.2. with $r\delta = q^2$. In order to do that, we should check that $\delta/2 \leq r \leq 3 + 1 \Rightarrow \delta/2 \leq q^2/\delta \leq 4 \Leftrightarrow \delta/2 \leq 3q^2/(1+q^2) \leq 4$ or, in other words, that $1 + q \leq 6q^2 \leq 8$. As $\delta/2 < q < 1$, this is obvious. Thus, applying the monotonicity property of the convex domination (i.e. $\mu \prec_{\alpha} \nu \Rightarrow \mu^* \prec_{\alpha} \nu^*$, see for instance [8], [9]) we get $\mu(3,q) = \mu(2,q) * U(\{0,q^2\}) \prec_{\alpha} U(\{0, \delta, 2\delta, 3\delta\}) * U(\{0,q^2\})$ and

$$\mu(n-1,q) \prec_{\alpha} U(\{0, \delta, 2\delta, \ldots, (2^n-1)\delta\}) \quad (2.20)$$

Next, we know that $\mu(n,q) = \mu(n-1,q) * U(\{0,q^n\}) \prec_{\alpha} U(\{0, \delta, 2\delta, \ldots, (2^n-1)\delta\}) * U(\{0,q^n\})$. In order to apply Corollary 2.2, we check that $\delta/2 \leq q^2/\delta \leq 2^n - 1 + 1$ or, explicitly, that

$$\frac{1}{2} \leq q^2(1 + \frac{1}{q} + \frac{1}{q^2} + \ldots + \frac{1}{q^{n-1}}) \leq 2^n \quad (3.2)$$

As $1/q < 2$, we have

$$q^2(1 + \frac{1}{q} + \frac{1}{q^2} + \ldots + \frac{1}{q^{n-1}}) \geq q^2(1 + \frac{1}{q} + \frac{1}{q^2} + \ldots + \frac{1}{q^{n-1}}) \geq 1 + 2 + 2^2 + \ldots + 2^{n-1}$$

hence the left inequality is clear. We have to prove the right one, which can be written as

$$q^n(2^n - 1) \leq 2^n$$

or

$$(2^n - 1)(q^n - q^{n+1}) \leq 2^n(1 - q^n) \quad (3.3)$$

But the function $f(q) = (2^n - 1)(q^n - q^{n+1}) - 2^n(1 - q^n)$ has the properties: $f(0) = -2^n$, $f(1) = 0$, and is increasing on the interval $[0,1]$, thus it is negative. It means that $U(\{0, \delta, 2\delta, \ldots, (2^n-1)\delta\}) \prec_{\alpha} U(\{0, \alpha_n, 2\alpha_n, \ldots, (2^{n+1}-1)\alpha_n\})$ with $(2^{n+1}-1)\alpha_n = 1 + q + \ldots + q^n$. Consequently, we proved the domination $\mu(n,q) \prec_{\alpha} U(\{0, \delta, 2\delta, \ldots, (2^{n+1}-1)\delta\})$ for any $n \geq 1$ where $(2^{n+1}-1)\delta = 1 + q + \ldots + q^n$.

If $q < \delta/2$, then $1/q > 2$ hence
By Corollary 2.2 the domination goes into the opposite direction.

The rest of the proof is routine: \(\mu(n,q) \) converges to \(\mu(q) \), \(U(\{0, \alpha_n, 2\alpha_n, \ldots, (2^n+1)\alpha_n\}) \) converges to Uniform(0, \(L \)) with \(1/L = 1 - q \) and the convergence is dominated, in the sense that the supports of all these measures are included in [0,\(L \)]. But it is well known – and easy to check – that if \(\mu_n \Rightarrow \mu, \ \nu_n \Rightarrow \nu, \ Supp(\mu_n) \cup Supp(\nu_n) \subset K, \ K \) compact, then \(\mu \prec_\text{ex} \nu. \)

Corollary 3.2 (Moments and moment generating function). Let \(q \in (\frac{1}{2}, 1) \), \(n \geq 2, \ t \geq 0 \) and \(1/L = 1 - q \).

Then

\[
E S^n (q) \leq \frac{1}{(n+1)(1-q)^n} \quad \text{and} \quad E e^{tS(q)} \leq \frac{e^{tL} - 1}{tL}
\]

Proof. The functions \(x \mapsto x^n \) ant \(x \mapsto e^{tx} \), \(x \geq 0 \), are convex and the distribution of \(S(q) \) is dominated by the uniform one. The second inequality can also be written as

\[
\lim_{n \to \infty} \frac{e^t - 1}{t} e^{q^n t} - 1 = \frac{e^{tL} - 1}{tL}
\]

If \(q = \frac{1}{2} \) (thus \(L = 2 \)) we get a strange equality.

ACKNOWLEDGEMENTS.

This paper was partially supported by an action of the program ECO-NET 2006 financed by the French government.

REFERENCES

Received: October 16, 2006