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This two-part paper presents the development and implementation of robust, efficient and accurate
numerical algorithms for hydrofoil cascade design, analysis and optimization. First, we review the
analytical approach for designing thin hydrofoil cascades with a given loading distribution. The
hydrofoil has zero incidence at leading edge, and satisfies the Kutta-Joukowsky condition at trailing
edge. A Hermite representation, with continuous derivatives, is used for the hydrofoil shape and the
nonlinear integral equation for the hydrofoil design is solved iteratively. The non-linear integral
equations are solved iteratively, and the convergence rate is investigated. Two turbine cascade
examples are presented, emphasizing the departure of the thin hydrofoil shape from the prescribed
pitch-averaged streamline.
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1. INTRODUCTION

The cascade model is defined as an infinite row of equidistant similar airfoil-shaped bodies, and plays a
central role in turbomachines design, analysis and optimization. As pointed by Gostelow [5], the cascade is
merely a model. In fluid mechanics the process of modelling is one of physical and mathematical
simplification and is intended to result in a rationalization and deeper understanding of the flow field
behaviour. As a result, the cascade flow analysis benefits from a large body of literature dealing with both
experimental as well as theoretical studies. The Timişoara School of Turbomachinery Hydrodynamics was
particularly focused on experimental investigation of linear [2] and radial [6] cascades, as well as on
developing analytical [10] and numerical [4] methods for cascade flow computation. Both energetical and
cavitational [1] characteristics of the hydrofoil cascades were investigated in order to provide the required
information for improving the hydraulic machines design.

The classical methods for cascade flow analysis have been summarized more than two decades ago in
monographies such as [5] and [13], and experimental results have been collected in catalogs such as [11] and
[3]. More recently, the focus has switched from using available aero- hydrofoil shapes and data toward
numerical design and optimization such that carefully chosen flow specifications are met directly in the
design stage. The main idea is to prescribe either the flow on the hydrofoil shape or the pitchwise averaged
flow and compute the corresponding streamlined body shapes.

Zangeneh [12] briefly reviews the inverse design methods available for two-dimensional cascades.
Ideally one would like to prescribe the pressure or velocity distribution on the pressure and suction surfaces
so that the blades are designed with optimized boundary layers. However, this type of design specification
has no control over blade thickness and could result in an ill-posed problem. For example, Lighthill found
that it is impossible to specify the velocity distribution on the pressure and suction surfaces together with the
upstream and downstream boundary conditions. As a result some authors prefer to prescribe the velocity (or
pressure) distribution on the suction surface and the thickness distribution, whereas others have proposed
methods in which the blade pressure loading is prescribed together with a thickness distribution. Lewis [9]
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also considers that attempting to specify a prescribed velocity distribution (and therefore pressure
distribution) on both suction and pressure surfaces at best may lead to unsuitable profile thickness
distribution. As a result, the prescribed velocity distribution is limited to the more aerodynamically sensitive
upper surface only, but a profile thickness is also prescribed. This inverse method is then used to design the
camber line shape required to achieve the desired velocity distribution on the suction side. The velocity
distribution on the pressure side is simply accepted to adjust freely to whatever it will.

A particularly important requirement when designing a cascade is to insure the so-called “shock-free”
inflow condition. This terminology is a little unfortunate since it has nothing to do with the shock waves
caused by compressibility effects in high speed flow. It is instead frequently used to refer to the particular
inlet angle for which the leading edge stagnation point is located precisely on the end of the profile camber
line. For greater or smaller inlet angles the stagnation point will move instead onto the pressure or suction
surfaces, respectively. Shock-free inlet flow thus ensures the smoothest entry conditions into the cascade and
is thus likely to be close to the minimum loss situation. However, the shock-free inlet angle may not
necessarily coincide exactly with that for minimum loss, which will usually be one or two degree greater [9].
The methodology introduced by Hawthorne et al. [7] directly enforces the shock-free condition at the leading
edge of thin hydrofoil cascades.

This two-part paper presents the authors ongoing efforts to develop a robust and efficient numerical
methodology, and the associated expert software, for analysis, design and optimization of hydrofoil cascades.
The main goal is to automatically optimize the hydrofoil shape for best efficiency as well as for best
cavitational characteristics. In Section 2 we review the method for designing thin blade cascades starting
from a prescribed flow deflection schedule. An original numerical method is developed for computing the
thin blade shape, and two turbine cascade examples are presented in Section 3. The paper conclusions are
summarized in Section 4.

2. THIN HYDROFOIL CASCADE DESIGN

Hawthorne et al. [7] developed a quasi-analytical method for designing two-dimensional highly loaded
cascades. The fluid is assumed to be incompressible and inviscid and the blades are assumed to have zero
thickness and incidence so that there are no stagnation points at the leading edges. In analysing the potential
flow through the cascade, one assumes that the thin blades may be represented by bound vortices of strength

( )xγ  distributed along camber lines given by ( ) 0, , 2 ,y f x s s− = ± ± ! , where s  is the blade spacing, or
pitch, Fig. 1. All lengths are made dimensionless by the cascade axial extent. The goal of the cascade design
is to find the camberline shape ( )f x  given the flow direction far upstream, 1α , and downstream, 2α , the
spacing s , as well as the vortex strength distribution  ( )xγ .

When employing a quasi three-dimensional approach for
turbomachinery design and analysis, the axial symmetry
assumption implies the use of pitch-averaged velocity vector,

( ) ( )
s

0

1 , dx x y y
s

= ∫V V . (1)

If the velocities upstream and downstream the cascade are
1V and 2V , respectively, we have

1 2x x xV V V= = , and ( )
1

2 1
0

1 dy yV V x x
s

γ− = ∫ . (2)

Obviously, for blades with zero thickness the pitchwise mean
value of the axial velocity remains constant within the bladed
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Fig. 1. Thin hydrofoil cascade notations

region as well. We can also introduce a pitchwise averaged

undary vorticity,
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( ) ( ) d
d

yVx
x

s x
γ

γ ≡ = , (3)

and the pitch-averaged tangential velocity can be written as

( ) ( )1
0

d
x

y yV x V t tγ= +∫ . (4)

 One can see from (4) that for cascade design we can alternatively provide the yV schedule instead of γ . An
average streamline, starting at origin, can also be found as,

( ) ( )
0

d
x

yf x V t t= ∫ . (5)

The above average streamline, ( )f x , does not correspond to any actual streamline in a finite pitch cascade.
However, it might be seen as the representative streamline in the limit 0s → , or for infinitely dense csacade.

In conventional cascade theory, the velocity field ( ),x yV  is written as the superposition of the vector

mean of the upstream and downstream flow, ( )1 2 / 2∞ ≡ +V V V , and the velocity ( )ˆ ,x yV  induced by the
vortices,

( ) ( )1 2 ˆ, , ,
2

y y
x x y

V V
x y V x y

+
= + +V e e V (6)

where xe and ye are unit vectors in x - and y -direction, respectively. The vorticity induced velocity can be
written using the Biot-Savart approach, [7],

( ) ( ) ( )
( ) ( )

( ) ( )

1

0

2 2sinh sin
ˆ ˆ, , d2 22 cosh cos
x y

x t i y f ti s sV x y iV x y t t
x t y f t

s s

π π

γ π π

− − −  
− = −

− − −  
∫ . (7)

On the blade, the normal velocity must vanish. The normal direction on the blade is given by the vector
( )( ) ( )'x yy f x f x∇ − = − +e e . Using (6) and (7), the condition of flow tangency on the blade can be written

as

( ) ( ) ( )( ) ( )( )1 2 ˆ ˆ' ' , , 0
2

y y
x x y

V V
f x V f x V x f x V x f x

+
− + − + = , (8)

leading to the following integral equation for the camberline shape,

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1
1 2

0

2 2sinh ' sind 1 1 d2 2d 2 2 cosh cos

y y

x x x

x t f x f x f tV V tf s sx t
x V V V x t f x f t

s s

π π
γ

π π

− + −   
= + + 

  − − −  
∫ .    (9)

By writing the integrand in (9) as

( ) ( ) ( ) ( )d 2 2ln cosh cos
2 2 d
t s x t f x f t

x s s
γ π π

π
 − − −    

,

we can integrate (9). If 0f =  at the leading edge 0x = , i.e. the camberline starts at the origin, we obtain
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( ) ( ) ( ) ( ) ( )

( )

1
1 2

0

2 2cosh cos
ln d2 22 4 cosh cos

y y

x x x

x t f x f tV V tx s s sf x t
V V V t f t

s s

π π
γ

π ππ

 − − −     
= + +   

   −
 

∫ (10)

The determination of the blade profile ( )f x  requires the integration of equations (9) and (10), each of which
has a singularity at t x= . As t x→ , we have ( ) ( ) ( ) ( )'f x f t x t f x− → −  and we can separate the
integrand singularities. With 1xV = , we can rewrite (9) as,

( ) ( ) ( )1
1 2

1
0

d tan tan , d ln
d 2 2 1

s xf xx F x t t
x x

γα α
π

+= + +
−∫ , (11a)

where ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( )

1

2 2sinh ' sin 1, 2 22 2cosh cos

x t f x f x f tt s xs sF x t
x tx t f x f t

s s

π π
γ γ

π π π

− + −  
= −

−− − −  
. (11b)

Now the integrand 1F  vanishes as t x→ and the integral can be performed with standard quadrature rules.
The last term in the right-hand side of (11a) is the Cauchy principal value of the singularity integral. The
same approach can be used to remove the singularity in (10),

( ) ( ) ( ) ( ) ( ) ( )
1 2

1 2
2

0

1 'tan tan 2 1, d ln ln ln 1 ln 1 1
2 2 2 2

s x f x
f x x F x t t x x x x

s
γα α π

π
  ++  = + + + + + − − −       

∫ (12a)

( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( )2 2

2

2 2cosh cos 1 '2, ln ln2 24 4 2cosh cos

x t f x f ts t s x f xs sF x t x t
st f t

s s

π π
γ γ π

π ππ π

 − − −     +    = − −         −
 

(12b)

In order to solve the equations (11) and (12), we assume a first guess for the unknown function ( )f x
and its derivative ( )'f x , and evaluate the right-hand sides. A suitable first guess is provided by the average
streamline (5). The new values for ( )f x  and ( )'f x  are further used to evaluate again the right-hand sides
in (11a) and (12a), and the iterative process continues until the solution change from one iteration to the next
one is smaller than a given threshold.

Since the integrals of 1F  and 2F cannot be evaluated analytically, we consider a discrete representation
of the unknown function. First, a set of points 1 2 10 1nx x x += < < < ="  are considered on the unit interval.
Our goal is to find the function values ( ) ( ) ( )1 1 2 2 1 1, , , n nf f x f f x f f x+ +≡ ≡ ≡" , as well as the function
derivatives ( ) ( ) ( )1 1 2 2 1 1' ' , ' ' , , ' 'n nf f x f f x f f x+ +≡ ≡ ≡" using the above iterative method. The function

approximation hf  is restricted on each sub-interval [ ]1,i ix x +  to a cubic polynomial, thus allowing a
continuously differentiable approximation 1hf C∈ . For notational simplicity, we write 1x  and 2x  in place of

ix  and 1ix + , respectively. On a subinterval hf  may be written as [8]
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 3 2 2 1 4 2

2 2
2 1 1 2

1 23 2

2 2
1 2 1 2

3 43 2

1 2 2 1

' ' ,

2
, ,

2
, ,

where , and .

hf t N t f N t f N t f N t f

x t h t x t x t x
N t N t

h h
t x h x t t x t x

N t N t
h h

x t x h x x

= + + +

− + −  − − = =

− + −  − − = =

≤ ≤ = −

(13)

This piecewise cubic approximation for ( )f t  is used to evaluate ( )1 ,F x t  and ( )2 ,F x t , respectively, at
quadrature points. There is no need for an approximation of 'f on the sub-intervals. Regular quadrature rules
can be employed, since neither ( )1 ,F x t  nor ( )2 ,F x t  have singularities as t x→ .

Once the camberline shape ( )f x  computed, one can compute the velocity field. It is convenient to re-
write the velocity vector, V , as the sum of the pitch averaged velocity V  and an y-periodic velocity V# ,

( ) ( ), ( ) ,x y x x y= +V V V# , where

( ) ( )ˆ, ,x xV x y V x y=#  and ( ) ( ) ( )1 2 ˆ, ,
2

y y
y y y

V V
V x y V x V x y

+
= − +# (14)

Using the identity

( ) ( ) ( )
1

1 2

0

sgn d
2 2

y y
y

V V t
V x x t t

γ+
− = − −∫ ,

as well as (7), we have the y-periodic velocity components

( ) ( ) [ ]

( ) [ ]

1

0

2sin ( )
, d2 22 cosh cos ( )

x

y f tt sV x y t
x t y f t

s s

π
γ

π π

−
= −

− − −
∫# (15a)

( ) ( ) ( )

( ) [ ]
( )

1

0

2sinh
s, sgn d2 22 cosh cos ( )

s s

y

x tt
V x y x t t

x t y f t

π
γ

π π

 − 
= − − 

− − − 
 

∫# (15b)

For ( )y f x→  we obtain the vector average of the velocity on the upper and lower sides of the thin
hydrofoil, ( ) ( )bl , ( )x x f x≡V V . The magnitude of the average velocity on the blade can be obtained by
taking the scalar product with the tangent unit vector,

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

lo up
bl bl

bl bl 2 2

1

0

' 1
2 1 ' 1 '

2 2' sinh sin
' sgn d2 22 cosh cos

x yV f x V xV x V x
V x x x

f x f x

f x x t f x f tt s s f x x t t
x t f x f t

s s

π π
γ

π π

++
= = ⋅ = + ×

+ +

 − − −   
− − 

− − −    

∫

V τ

. (16)

Note that the integrand vanishes as t x→ , thus we have a regular integral.
In addition to the average velocity (16), we can write the velocity jump using the elementary

circulation as ( ) ( )lo up
bl bld dx x V V lγ = − , where the circulation is positive counterclockwise. As a result, the

velocity jump from the lower to the upper side of the thin foil is
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( ) ( ) ( ) ( )
( )

lo up
bl bl 2

d
d 1 '

xxV x V x x
l f x

γ
γ− = =

+
. (17)

Equations (16) and (17) give now the velocity magnitude on the foil lower and upper sides as,

( ) ( ) ( )
( )

lo
bl bl 2

1
2 1 '

s x
V x V x

f x
γ

= +
+

  and  ( ) ( ) ( )
( )

up
bl bl 2

1
2 1 '

s x
V x V x

f x
γ

= −
+

.
(18)

The pressure follows from Bernoulli’s theorem. The pressure coefficient is defined with respect to the
upstream conditions,

2
21

1
2
1

1 cos1
2

p
x

p p Vc
VV

α
ρ

 −= = − 
 

. (19)

3. TURBINE CASCADE DESIGN EXAMPLE

Let us consider an example for the cascade design method presented in Section 2. The key ingredient is
the vortex strenght distribution function, which is taken here of the form:

( ) ( ) ( )2 1
15tan tan 1
4

x x xγ α α= − − . (20a)

This function is in agreement with usual considerations concerning hydrofoils currently used in hydraulic
machinery blading. One can immediately see that ( )1x x−  vanishes at both leading edge and trailing edge,
thus providing a shock-free flow and complying with the Kutta-Joukowsky condition, respectively. The

integral of the distribution function is ( ) ( )1

0
15/ 4 1 d 1x x x− =∫ , as required by Eq. (4). Finally, the

maximum of the distribution function is reached at 1/ 3x = , leading to a larger hydrofoil loading in the front
half of the chordlength in comparison to the rear half.  Of course, (20a) is not the only choice available, and
in practice one should use a parametric vortex strength distribution to provide the required flexibility for
optimization studies. However, the present paper is aimed at developing, validating and assessing the
accuracy of design and numerical analysis methods to be further used for cascade hydrodynamics studies.

The pitch-averaged tangential velocity can be computed from (4),

( ) ( ) ( )1 2 1tan tan tan 3 5
2

y

x

V x x x x
V

α α α= + − − + . (20b)

The average streamline that originates at the origin is, according to (5),

( ) ( )1 2 1
3tan tan tan 1
7

f x x x x xα α α  = + − − +    
(20c)

Figure 2 shows the vortex strength (20a), Fig. 2a, tangential velocity (20b), Fig. 2b, and an average
streamline (20c), dashed line in Fig. 2c, for a turbine cascade with inlet/outlet angles $351 =α and $552 =α .
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Fig. 2. Data for the design of a turbine cascade with 1 35α = $ and 2 55α = $ , and the computed camberline for cascade pitch 1s = .

The primary design data is ( )xγ , but alternatively one could specify the tangential velocity schedule
( )yV x . The mean streamline ( )xf , shown with dashed line in Fig. 2c, does not depend on the cascade pitch,

but the camberline shape, ( )f x ,  does. As a result, in addition to the above flow schedule, we need to
specify the cascade pitch, s . Since the thin blade shape (camberline)  is not know yet, the blade spacing is
made dimensionless by the cascade axial extent since we do not know apriori the blade chordlenght. For the
first numerical example we have considered a cascade with 1=s . The computed camberline is shown Fig.
2c with solid line. Once the camberline known by solving (9) and (10), we can compute its chordline length,
leading to the pitch/chord ratio of 6614532.0/ =cs . The stagger angle, i.e. the angle between the chordline
and the axial direction, is $59.48=sα . Although the difference between the camberline and the average
streamline might seem rather small from Fig. 2c, one can see that the difference in slope is quite large,
particularly near the leading edge. Fig 2d shows that the camberline direction at leading edge should be

$7.21 , quite different from the far upstream flow angle $351 =α , in order to obtain zero incidence and
shock-free flow. The angle of attack, i.e. the angle between the chordline and the upstream/downstream
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vector average velocity ( )1 2 / 2∞ ≡ +V V V , is $$$ 81.178.4659.48 =−=− ∞αα s . Near the trailing edge the

camberline angle is sligthly larger than the downstream flow angle $552 =α . An interesting feature is the
reverse curvature near the trailing edge, as noted by Hawthorne et al. [7] as well.
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Fig. 3. Turbine cascade with 1 35α = $ and 2 55α = $ , and pitch 2=s  (pitch/chord ratio / 1.270120s c = ).

When the cascade pitch is increased to 2=s  the blade loading increases and the camberline departure
from the mean streamline gets larger, as shown in Fig. 3a. This cascade has a pitch/chord ratio

1.270120/ =cs  and a stagger angle $5756.50=sα . The corresponding angle of attack is
50.58 46.78 3.8sα α ∞− = − =$ $ $ . Figure 3b shows that the camberline is practically aligned with the axial

direction at the leading edge, where the camberline angle is 1.7− $ .  At trailing edge the camberline slope
57.47$ is larger than the downstream flow angle 2 55α = $ , and due to the reverse curvature near the trailing
edge the maximum camberline angle is 59.88$  at 0.8423x = .

Since solving the non-linear integral equation requires an iterative algorithm, we also examine the rate
of convergence. The change in the camberline shape at the current iteration m  from the previous one 1−m
is quantified as,

( )
( )
1 21

1

1

n
m m

i i
m i

f f

n
ε

+
−

=

−
=

+

∑
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Fig. 4. Convergence of the iterative design algorithm.

One can see from Fig. 4 that the iterative algorithm for solving the nonlinear integral equation displays
a linear convergence. However, the convergence rate decreases as the cascade pitch increases.
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For future developments of the cascade design algorithm, for example to include a blade thickness
distribution, an alternative to equation (10) must be found. Indeed, when deriving (10) we have used the
particular form for the integrand in (9). However, this is no longer the case when a thickness distribution is
added via a dipol distribution on the camberline. In this case, Eq. (10) should be replaced by a numerical
technique to reconstruct the camberline ( )f x  when d /df x  is known from (9). A good candidate for the
reconstruction procedure is a cubic spline representation for ( )f x . Using the function representation (13),
we have to impose the continuity of the second derivative at the nodes. In doing so, for each interior node

2i n= "  we obtain

1 1 1 12 2 2 2
1 1 1 1 1

1 1 1 1 1 1 1 1 12
3i i i i i i

i i i i i i i i

f f f f f f
h h h h h h h h− + − +

− − − − +

    ′ ′ ′− + − + = + + +    
    

, (21a)

where 1 1i i ih x x− −= − , 1i i ih x x+= − , and the right-hand side can be evaluated once the first derivative at nodes
has been computed from Eq. (9). For the last interval we can assume that the second derivative is the same at
end-points, leading to

1 1

2
n n n n

n

f f f f
h

+ +′ ′− += . (21b)

If we add the condition 1 0f = , we obtain a tri-diagonal system of 1n +  equations. The solution of this
system provides the nodal values , 1 1if i n= +" , corresponding to the spline camberline with given nodal
slope. We have implemented in our code this reconstruction procedure using the LSLTR subroutine from the
IMSL library, as an alternative to Eq. (10). Note that the tri-diagonal system matrix is fixed, and only the
right-hand side vector needs to be updated at each iteration. Moreover, solving this tridiagonal system of
equations is more efficient than numerically computing the integral in Eq. (10).

The above spline representation for the camberline may display spurious oscillations for highly
cambered blades. An alternative that sacrifices to some extent the accuracy is to employ a piecewise
parabolic approximation for the camberline, thus integrating (9) as

( ) 1
1 1 2

i i
i i i i

f ff f x x −
− −

′ ′+= + − , for 2, , 1i n= +"  and with 1 0f = . (22)

This is a second order scheme, equivalent to the trapezoidal rule of integration. The error for each subinterval
of length 1i ih x x −= −  is of order ( )3O h f ′′ , where the function’s second derivative should be evaluated
somewhere in the interval of integration. More accurate integration formulae can be used, but the
computation becomes increasingly expensive as additional evaluations of f ′  are required within the interval
of integration.

4. CONCLUSIONS

The paper presents a methodology for designing thin blade cascades, starting from a given distribution
of tangential velocity from upstream to downstream. The blades are designed for a shock-free flow at leading
edge. The authors develop and original numerical method for solving the nonlinear problem of finding the
thin blade shape, and present two examples that clearly show how the blade shape is changing with the
cascade spacing while the loading distribution and the overall flow deflection are kept constant. The
convergence rate of the iterative algorithm for solving the non-linear integral equations is decreasing as the
cascade spacing is increased. The analytical integration of main design equation (9), i.e. Eq. (10), can be
replaced with a numerical integration or cubic spline reconstruction of the blade, without decreasing the
overall accuracy of the results. However, the spline reconstruction of the blade shape may display spurious
oscillations, therefore the numerical integration using a trapezoidal rule is more robust.
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