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Recent studies have discussed phase transitional behavior in the evolution of nuclear structure from
spherical to deformed shapes and have led to the development of a new class of symmetries, E(5) and
X(5), describing analytically nuclei at the critical point of the phase transitions. Empirical realizations
of the X(5) symmetry are presented.

1. INTRODUCTION

Central to the understanding of nuclear structure is the existence of a set of paradigms that act as
benchmarks describing idealized limits. Without these limits, collective nuclear level schemes would appear
incredibly complicated and not amenable to easy understanding. Indeed, these paradigms provide the
framework to address one of the two main themes of modern science in general and nuclear physics in
particular, namely, how does one account for the astonishing regularity exhibited by complex many-body
objects, such as nuclei, that represent the result of the combination of up to hundreds of strongly interacting
fermions.

Fundamental to any discussion of nuclear structure and its evolution across the N-Z plane is the
concept of magic numbers which provides the simplifying ansatz of an inert core and valence particles.
Collectivity is described in terms of harmonic vibrators [1], deformed symmetric rotors [2], and γ-unstable
nuclei [3]. The energy spectra corresponding to these benchmarks of nuclear structure are presented
schematically in Fig. 1. These three limits of structure have been codified under the umbrella of the algebraic
structure U(6) in the framework of the Interacting Boson Approximation (IBA) model [4] in terms of U(5),
SU(3), and O(6) dynamical symmetries, respectively.

Figure 1. Energy spectra corresponding to a spherical vibrator, axially deformed rotor, and a deformed  γ-unstable nucleus

In Figure 2 the symmetry triangle for the IBA [5] is shown. Each vertex represents one of the three
symmetries mentioned above, and the legs denote transitional regions in which, over a series of nuclei, the
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structure undergoes a transition from one symmetry to another. Of course many nuclei correspond to internal
positions in the triangle.

Figure 2. Symmetry triangle for nuclear structure showing the three traditional limits of structure (spherical vibrator, axially
symmetric rotor, and deformed γ-unstable corresponding to U(5), SU(3), and O(6), respectively), the two new critical point

symmetries,  E(5) and X(5), and the phase/shape diagram in the framework of the Interacting Boson Model. See text.

Experimental examples of all three types of symmetries have been found in nuclei. The U(5) nuclei can
occur near closed shells with only a few valence nucleons of both types and one of the best example is 114Cd 
[6]. SU(3) nuclei can occur in the middle of shells and the closest to this symmetry are Yb and Hf with
N=104 [7]. The O(6) limit tends to occur when one kind of nucleon comprises particles and the other kind
holes and their total number is relatively small. The best realizations of this symmetry are in Pt (especially
196Pt) [8] and Xe-Ba with N<82 (especially 124Xe) [9].

Despite this phenomenological knowledge, it is useful to have a microscopic understanding of where
nuclei exhibiting structures close to these symmetries occur. It is well known that the pairing interaction
between like nucleons drives the nucleus towards a spherical shape since it forms the J = 0+ coupling of pairs
of identical nucleons which have spherically symmetric wave functions. Deformation and collectivity, on the
other hand, arise from configuration mixing, which corresponds to a non-uniform distribution of magnetic
substate occupation and, hence, of non-spherical shapes. Configuration mixing itself is largely driven by the
valence p-n interaction. Hence it is a pairing—p-n competition that tends to drive the structural evolution of
nuclei. We can use this idea to estimate the locus of collectivity in nuclei. Since the p-n interaction strength
is, roughly, 200-250 keV, and the pairing interaction is 1 MeV, it takes something like five p-n interactions
to overcome one pairing interaction. Thus, one expects significant collectivity and the onset of deformation
when:

5p n

p n

N NP
N N

= ≈
+

(1.1)

where  Np and Nn are the numbers of valence protons and neutrons, respectively, NpNn represents the number
of p-n interactions and Np + Nn  the number of pairing interactions. Figure 3 illustrates the locus of Pcrit ~ 5
for the principal regions of nuclei where the transition between spherical and quadrupole deformed nuclei
takes place. These contours are only guidelines since they ignore sub-shell closures (e.g., at Z = 64) and their
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evolution with N and Z. Many more such contours could be shown for the new regimes of nuclei far from
stability that are beginning to become accessible as beams of exotic nuclei are developed.
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2. FIRST ORDER PHASE/SHAPE TRANSITION IN LOW ENERGY NUCLEAR SPECTRA AND
THE CRITICAL POINT SYMMETRY X(5)

    The study of the functional form corresponding to the total energy of the IBA Hamiltonian has
shown [20] that there is a phase/shape transition as a function of the IBA parameters: a first-order phase
transition for a U(5)–SU(3) transition and a second-order phase transition for U(5)–O(6) transition. This is
best seen with the IBA Hamiltonian in terms of a “control parameter” ζ as follows:

(1 )
4

d
B

H n Q Q
N

χ χζ= − ζ − • (2.1)

where Qχ = (s †d̃ + d†s) + χ(d†d̃)(2).  This Hamiltonian describes (up to a scaling factor) the entire U(5)-SU(3)
transition (χ= 7− /2 ) by varying only the parameter ζ between 0 [in the U(5) limit] and 1 [in the SU(3)
limit].

    Figure 4 shows as an example the evolution of the total energy as a function of ζ for the U(5)-SU(3)
transition for NB = 10 bosons. There is a phase/shape coexistence region, which starts where the deformed
minimum develops in addition to the spherical one and ends where the spherical minimum disappears and
only the deformed minimum remains. In between there is a point where the two minima are equal and the
first derivative of Emin, ∂ Emin/∂ζ, is discontinuous and, consequently, the phase transition is first-order. Phase
transitions are, of course, defined only for infinite number of particles and for finite number the
discontinuities are smoothed out.

Figure 4.  The evolution of total energy for the
U(5)-SU(3) leg of the symmetry triangle as a

function of the control parameter ζ for the
U(5)-SU(3) transition  (χ=-1.32) for NB = 10

bosons (calculations of G. Fernandes).

A well known example of a transition from spherical vibrator [U(5)] to axially  deformed [SU(3)]
nuclei occurs in the A ~150 mass region, and the IBA model can reproduce very well a large variety of the
data. We performed IBA calculations for the entire region N~90 with the simple [21] IBA Hamiltonian in eq.
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(2.1) which involves only one parameter, ζ,, which depends only on the neutron number N, for all the
isotopic chains [22]. In these calculations, χ was set equal to the value 7− /2 corresponding to the bottom
leg of the triangle. Figure 5 shows that the evolution of some basic observables in Nd-Dy nuclei is very well
reproduced by these calculations. The empirical R4/2≡E(4+)/E(2+) ratio evolves from ~2.0, characteristic for a
spherical vibrator to ~3.33 for a rotor with a sharp rise at neutron number N=90. The energy of the intrinsic
excitation 0+ has a minimum at the phase transition point. The phase/shape transition is mirrored in the
calculations and, as noted, the IBA parameter ζ plays the role of a control parameter.

Figure 5. The evolution of empirical values of the R4/2≡E(4+)/E(2+) ratio and of E(0+
2) in the Nd-Dy isotopic chains with N>82

compared with the IBA results.

The total energy surface corresponding to the Sm isotopes [23] obtained from the IBA with increasing
neutron number changes the location of the deformation minimum, from β = 0 to finite β when the neutron
number increases from 88 to 92. Figure 6 shows schematically the evolution of this energy. At the critical
value ζ = 0.5, which corresponds to N=90 (152Sm), two phases/shapes coexist [24] and the energy surface has
a nearly flat bottom, as envisioned in the X(5) critical point symmetry.

N=90 seems empirically to be exactly the point which corresponds to X(5). Despite the fact that X(5) is
a crude approximation to the real problem, the comparison with the data presented in Figure 7 shows that the
agreement is impressive. Except for scale, the predictions are parameter free. The experimental energy ratios
R4/2 = 3.01 and R(0+) ≡ E(0+)/E(2+) = 5.62 are well reproduced by the symmetry where these ratios are 2.91
and 5.67, respectively. Moreover, X(5) predicts a near degeneracy of the 0+ and 6+ levels which is observed
in 152Sm. The in-band B(E2) values are also very well reproduced and the inter-band B(E2) strengths, despite
the fact that they are predicted to be larger than the data, have relative ratios in good agreement with the
model [14,15].

2 1
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Figure 6. The vibrator-rotor transition in the Sm isotopes with sketches of the total energy as a function of the quadrupole
deformation.

Figure 7. Comparison of predictions of the critical point symmetry X(5) with the data for 152Sm. The B(E2) values in W.u. are given
for each transition. Figure based on ref.  [14].

  Other nuclei in the A~150 transitional region with N=90 have similar properties (see Fig. 8). All these
nuclei have R4/2 ~ 3 and E(0+

2)/E(2+
1)~5 which make them very good candidates for the X(5) symmetry.
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Figure 8. Evolution of different observables across the N=90 region for the Nd, Sm, Gd and Dy isotopic chains compared with the
X(5) predictions. Figure based on ref.  [17].

The search for other candidates for the X(5) symmetry in the rare earth region is an important issue.
We can use the concept illustrated in Fig. 3 to aid in identifying candidates. Figure 9 shows an expanded
region of the rare earth nuclei with the P ~ 5 contour. In the box for each nuclide we show the empirical R4/2
ratio. Recalling that R4/2 = 2.91 is the characteristic X(5) value, we see that the P-contour gives the locus of
X(5) candidates very well. At Yale, we are currently studying 162Yb and 166Hf which, from Fig. 9, are
evidently potential X(5)-like nuclei.  162Yb, in particular, provides an interesting case that also illustrates the
power of studying traditional reactions with modern spectroscopic tools. The existing 162Yb level scheme
shows a ratio R(0+

2)/R(2+
1) = 3.63 which is far from the X(5) value of 5.67. There is a second excited 0+

state, however, with R(0+)/R(2+
1) = 6.03, much closer to X(5). The lower 0+ state is empirically based on

unpublished β decay data from 1980 [25]. Recent Yale experiments with a Moving Tape Collector/Clover
detector system at WNSL showed conclusively that the heretofore assigned first excited 0+ state does not in
fact exist [26]. Hence, 162Yb now takes on added interest as a potential X(5) nucleus. However, the yrast
B(E2) values are a bit puzzling. They do not seem to reflect the structure of any single model. We are
currently carrying out experiments to re-measure them.

2 1
1
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                             Z

N
Figure 9. Nuclei in the 54<Z<80, 86<N<106 region. The

shaded contour shows the locus of P~5 values, i.e., candidates
for the critical point symmetry X(5). The numbers in each box

are the empirical R4/2 ratios. Based on ref. [26].

3. SUMMARY

  In this brief discussion, we have tried to outline some of the newest developments in the structure of
nuclei undergoing rapid shape transitional behavior.

We have discussed the theoretical description of new symmetries at the critical point of spherical-
deformed phase transitions and the experimental evidence for them. The X(5) analytic solutions for the
critical point in the spherical to axially deformed phase/shape transition is closely manifested empirically in
152Sm and in other N=90 isotones. We have also discussed a simple ansatz based on a microscopic
perspective for identifying possible new regions of critical point behavior, and illustrated this with comments
on 162Yb.
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