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ON COLLINEAR AND QUASI-COLLINEAR INVOLUTIONS

Richard GABRIEL

Hardtstr. 36, D-76185 Karlsruhe, Germany

We show that involution collinearity and involution quasi-collinearity are equivalent concepts in the
projective group P, (F) .

An element i # e in a group with unity e is said to be an involution if i =e.
Three involutions iy, i,, I5, where at least two of them are different, are said to be collinear if their
product also is an involution: i, i, i; = i. This definition was given by J.Hjemslev and G.Hessenberg; later

Bachmann [1] used it in order to develop a plane geometry foundation based on group theory. In [2] we have
investigated it in various groups and algebras, especially in symmetric groups.
Three involutions i, 1,, i, are said to be quasi-collinear if there exists an elementc # e such that the

products
L
ci=ij,ci, =iy,ci, =i,

all are involutions. We have introduced this definition in [3] in connection with uniqueness of the solution to
a three-message problem in a group.

Let F be a field and P,(F) the associated projective group; it consists of all homographies of F, i.e.
of all maps of the form:

_ax+hb

, XUOF,
cx +d

with a, b, ¢, d [ F. Such a map can be homeomorphically represented by the matrix:

@ b
K =01 U
¢ df

Then the product of two homographies corresponds to the products of the two associated matrices. An
involution is characterized by d = —aand det K # 0.

Proposition. For any three involutions iy, i,, i, in P,(F) the following statements are equivalent:
(i) i, 1,, 15 arecollinear: i, i,i; =1;
(ii) iy, 1,, 15 are quasi-collinear: ci =i;, Ci, =i, Ci; =i;, CZe€;
(iii) the matrices:

(X, X, O Ly, ¥, O z, 2z, 0
K1 =0 % K2 =0 % K3 =0 B
%(3 X[ %’3 VAN %3 — 70

associated with the involutions iy, i, i, are linearly dependent.

Proof. Obviously, (iii) is equivalent to
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X X X
i Yo Y5 T 0 (IV)
L, I, 1

We will show that both (i) and (ii) are equivalent to (iv). First, let us calculate the product

(X, X, [y, Yy, 12, z, U

K,K,K, = U N NN B:
%(3 X %’3 Y %3 — 74,0
(X Y12y + X, Y52, + X Y,23 = X, Y125 * O @ bQO
=0 O=0 0
[l [l 0
L * X3Y¥1Z, = X1 Y32, = X3YoZy = X Y14, [ %: dg

Now it is clear that a + d = 0, that is, (i) is equivalent to (iv).

Second, let C # Al be a matrix with detC # 0 consider the products

CK, = (€, C,IX, X, O_[€;X +CyX%; * [
- 0O [l
% 04%( -X0 0 * C3X, =C, X [0
¢, ¢ DEV1 Y, O [y, TC Y, * [

CK, = =0 O=0 O
O d O

%a Cy %’3 - Y0 O * C:Y, =C¥i[0

(¢, c,tur, 1z, 0 [€2 *+C,z, * H

=4 NN D— D O

[l

% C4% ZlD * C3Z, —=C,7, [

These matrices are associated with involutions if and only if
(C; = C4)%; +C3X, +C,%X; =0
(Cl_c4)y1+C3YZ+Czy3:0 (V)
(c, =€)z +C3Z, + €523 =0

and it is easy to see that (v) is equivalent to (iv).

Remarks.

1. Statement (ii) is a consequence of statement (i) even in an arbitrary group G. Indeed,
fromi, i, i; =1 we get

(hi)i; =1 =1y, ()i, =i, =1, (ii,)i, =1i;.
With ¢ =1,i, # e, statement (ii) is satisfied as soon as i, Z 1, .

2. In a Bachmann geometry, the group P,(F) is essential. Therefore, collinearity and quasi-
collinearity in P,(F) are equivalent concepts.
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3. In an infinite symmetric group there are, however, quasi-collinear involutions which are not
collinear.
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