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The aim of the  paper is to show a property of the solutions of a system of determinantal equations.
As an application we prove that an assertion is true if n = 1,2,3, but it does not hold if n = 4.

Properties of solutions of systems of nonlinear equations were investigated by many authors [1-8]. For
a comprehensive survey on the systems of polynomial equations, see the relevant chapters in [1,2].

 When the nonlinear equations are defined in terms of determinants, they are called determinantal
equations (see [3] and [7]). The aim of the present paper is to exhibit a property of the solutions of a system
of determinantal equations.

Let A be a square matrix and consider the polynomial map ( ) ( ) C∈−= tAtItp ,det  and the set

( ) ( ){ } : 0A t p tσ = ∈ =C . The polynomial p is called the characteristic polynomial of the matrix A and ( )Aσ

is called the spectrum of A. The elements of  ( )Aσ  are called eigenvalues of A.
If q is a polynomial with complex coefficients

( ) m
mm cxcxcxq +++= − ...1

10 ,

then we shall define the matrix

( ) IcAcAcAcAq mm
mm ++++= −

−
1

1
10 ...

Denote by  Mn(K) the set of all square matrices of dimension n whose entries belong to the field K.

Theorem 1. Let f 1, f2,…,f n be monic polynomials with real coefficients whose roots are located on the
unit circle and are different from 1± . Denote

( ) ( )[ ] { }{ }njAfMA jn ,...,2,1,0det:2 ∈∀=∈= RA ( ) ( ){ }1det:2 =∈= AMA n RB

Then the following assertions are equivalent:
1. ( ) kjeveryforff kj ≠= 1,gcd

2. BA ⊂
Proof. To prove 1fi2 suppose that ( ) kjff kj ≠= for1,gcd  and let A∈A . Note that if ( )Aσ∈λ

then ( ) ( )( )Aff jj σ∈λ . Since ( )[ ] ( )
( )

∏
σ∈λ

λ==
A

fAf 11det0  it follows that there exists ( )Aσ∈λ1  such that

( ) 011 =λf . One can easily see that 11 =λ  and ( ) 011 =λf . Since ( )[ ] ( )
( )

∏
σ∈λ

λ==
A

fAf 22det0  it follows

that there exists ( )Aσ∈λ 2  such that 12 =λ  and  ( ) ( ) 02222 =λ=λ ff . By ( ) 1,gcd 21 =ff it follows that

21 λ≠λ . If we iterate the argument we obtain that for every { }nj ,...,3,2∈  there exists

( ) { }1 2 1 , ,...,j jA −λ ∈ σ − λ λ λ  such that 1=λ j , ( ) ( ) 0=λ=λ jjjj ff .
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Consequently ( ) { }1 21 2 , , , ,..., , nnAσ = λ λ λ λ λ λ  whence

( )

2
1 21 2 1 2det ... ... 1nn n

A
A

λ∈σ

= λ = λ λ λ λ λ λ = λ λ λ =∏

To prove 2 fi1, suppose that  gcd(f1 , f2 ) = d is a nonconstant polynomial. Let l2, l3,…,ln be complex
numbers such that ( ) 02 =λd  and ( ) njf jj ,...,4,3,0 ==λ . One can easily see that RC −∈λ j ,

1=λ j nj ,...,3,2for = . Let tj e R be such that     lj = cos tj + i sin tj nj ,...,3,2for =  and consider the
matrices

nj
tt
tt

A
jj

jj
j ,...,3,2

cossin
sincos

=





−

=

By ( ) 02 =λd  it follows that ( ) 02 =Ad  whence ( ) ( ) 02221 == AfAf .By  ( ) 0=λ jjf  it follows that

( ) ,0=jj Af    j = 3,4,…,n. Consider the 2n ¥ 2n matrix
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A
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...000
...............
0...00
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1

with 01 =A . We shall use the shorthand ( )nAAAA ,...,,diag 21= . Note that:
( ) ( ) ( ) ( )( )nAfAffAf 13111 ,...,,0,0(diag= ,
( ) ( ) ( ) ( )( )nAfAffAf 23222 ,...,,0,0(diag= ,
( ) ( ) ( ) ( )( )nAfAffAf 32333 ,...,0,,0(diag= ,

……….……………………………..
( ) ( ) ( ) ( ) ( )( )0,,...,,,0(diag 132 −= nnnnnn AfAfAffAf .

Thus ( )[ ] 0det =Af j  for every j=1,2,…,n. Note that 0det...detdetdet 21 == nAAAA . Consequently

BA −∈A . This contradicts assertion 2.
Corollary 2. Let nfff ,...,, 21  be irreducible monic polynomials with real coefficients whose roots are

located on the unit circle and are different from 1± . Suppose that ( )RnMA 2∈  is a matrix such that
( )[ ] 0det =Af j  for every  j = 1,2,…,n. If nfff ,...,, 21   are distinct then det A = 1.

Corollary 3. Let 2≥jm , j = 1,2,…,n be natural numbers such that ( ) 1,gcd =kj mm  for every

kj ≠ . Denote ( ) 12 ...1 −++++= jm
j ttttf ; j = 1,2,…,n. If ( )RnMA 2∈  is a matrix such that

( )[ ] 0det =Af j , j = 1,2,…,n  then  det A =1.

Proof. One can easily see that all the roots of the polynomials jf , j = 1,2,…,n are located on the unit

circle and are different from 1± . Since ( ) ( ) 11,1gcd ,gcd −=−− kjkj ttt  it follows that ( ) 1,gcd =kj ff  for
kj ≠ . The conclusion of the corrolary follows at once from Theorem 1.
Consider the following statement:
Statement A5. Let *N∈n  and ( )RnMBA 2, ∈ .  If  AB=BA  and

( ) 2 2 1 2 1 2

1

* det ... 0
n

k k k k

k

A A B AB B− −

=

 + + + + = ∑  then det A = det B.

One can easily note that:
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Remark 4. The conclusion of statement A5 holds if the matrices A and B are singular.
Remark 5. Since [ ] 0...det 212122 ≥++++ −− kkkk BABBAA  for every 1≥k  it follows that the

equation (*) implies that [ ] 0...det 212122 =++++ −− kkkk BABBAA  for every  k = 1,2,…,n
Remark 6. Statement A5 is equivalent to
Statement A5'.  If ( ) j

j ttttf 22 ...1 ++++=  , j = 1,2,…,n and ( )RnMC 2∈  is a matrix such that

( )[ ] 0det =Cf j  for every  j = 1, 2,…,n then det(C) = 1.
Remark 7. From Theorem 1 we see that the conclusion of statement A5' holds if n = 1,2,3 but it does

not hold if  n = 4. In the latter case we see that ( ) .const,gcd 141 ≠= fff
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