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    This Symposium of the Humboldt Club in Bucharest is dedicated to the work of Werner
Heisenberg.  At the occasion of the hundredth anniversary of his birthday the aim is to recall the
impact of Heisenberg’s work not only on physics and related fields but also on philosophy and on our
present understanding of science.  Werner Heisenberg discovered and formulated the laws of quantum
physics, the concepts and the tools we use every day.  These discoveries resulted from his ambitious
goal to reveal the fundamental laws of physics and to understand these laws within the logical and
structural aspects they imply for the understanding of nature and of thinking. In this way he was
aware of the potential of this fundamental new approach and applied the concept of quantum
phenomena to physics, chemistry, biology, and to logical-philosophical questions.
    Being invited here as first speaker of this Symposium it is appropriate, I think, first to recall a few
dates out of his vita and essentials of his work, and then to address to a timely subject, which is, as I
hope to show, related to the work of Werner Heisenberg.

1. ABOUT THE VITA OF WERNER HEISENBERG

Werner Heisenberg was born in Würzburg, 1.12.1901, his father was professor for Greek language. He
studied in München in 1920, attending Sommerfeld’s seminar.  Werner Heisenberg identified the question
about the basic laws determining the quantum structure of the atoms as the most challenging topic of his time
and he concentrated his study exclusively on this. Due to Sommerfeld he had early contact with Göttingen
and there with Niels Bohr.  A Fulbright award in 1924 allowed him to stay longer in Kopenhagen with Bohr.
As post-doc in Göttingen he published in 1925 "Über die Quantentheoretische Umdeutung kinematischer
und mechanischer Beziehungen", his fundamental paper. In 1927 he formulated the uncertainty-relations,
became full professor in Leipzig, and addressed himself to questions of nuclear physics. In 1932 he
published "Über den Bau der Atomkerne". In this year he also received the Nobel prize. In 1939 he decided
to keep staying in Germany, motivated by Max Planck to "wait for the time after". He directed the
"Uranprojekt" and changed in 1941 to the Kaiser Wilhelm Institut in Berlin. After the war, in 1946, he tried
to organise recovery of physics in Germany with the Max Planck Institut für Physik in Göttingen. The
Alexander von Humboldt Stiftung was inaugurated in 1953 with Werner Heisenberg being the first
"Präsident". I think it was important for him to return to others, what he as young scientist received as
support. In post war Germany he played a dominant role to reestablish and reintegrate science in Germany.
With "his" Max Planck Institut für Physik he moved to München in 1958. His specific scientific topic at that
time was field-theory.  He deceased, 1.2.1979, in München.
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2. ABOUT THE PHYSICS OF WERNER HEISENBERG

Heisenberg replaced the laws of Newton by operator equations which govern the physics of the
quantum world.  The dynamics of a system is expressed by the time dependence of a state function or state
vector Ψ, and the probability to "find" the particle is proportional to the complex conjugate square of this
state function or vector |Ψ|2. The system is determined by an operator expressing the energy as function of
respective variables, namely the Hamiltonian Operator H which is applied to the state functions or state
vectors Ψ:

i!Ψ" =HΨ (1)

The structure of this equation implies stationary states if:

HΨ=EΨ (2)

with E being a constant. These states are discrete in energy, they are labeled by quantum numbers, say n, so
we have eigenenergies En and eigenfunctions Ψn. According to the symmetry properties of the Hamiltonian
several quantum numbers may appear.

In the limit of large quantum numbers n the results of quantum physics are consistent with Newton, in
this sense there is no contradiction.

The Hamiltonian Operator H is a function of variables, as position (x, y, z), momentum (px, py, pz),
angular momentum (lx, ly, lz), spin angular momentum (sx, sy, sz) etc.  These quantities are operators, too, and
there are relations in between these operators as:
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These commutator relations are the origin of Heisenberg’s uncertainty relations.  In addition, they may
reduce the number of allowed terms in the Hamiltonian Operator.

Physics is especially interesting if it refers to systems of a few degrees of freedom or to systems of high
symmetry where the results may be expressed in a few terms.  Heisenberg always tried to identify
symmetries and/or to study systems with a few eigenstates.  A good example is the spin-isospin concept with
two-dimensional eigenstates, Heisenberg used in his early concepts of nuclear forces. They allow group
theoretical classifications.  Within quantum mechanics the symmetries of the group provide a definite
scheme of quantum numbers, eigenstates and eigenenergies, independent of the specific nature of the
problem. Thus the two-state symmetry U(2) of spin s =1/2 systems applies to very different fields of physics.

Heisenberg applied group theoretical classifications to extend his early studies of atoms to "larger"
systems in molecular and solid state physics, and to "smaller" systems in nuclear and elementary particle
physics. To all of these important areas Heisenberg formulated basic laws and concepts which still determine
our thinking.

In the following part of my talk I address to a field of physics I am actively involved.  It is a field of
nuclear physics and in there the spectra of heavy, complex nuclei, which are the subject of ongoing
experimental research in Munich [1,2,3]. Here, symmetry classifications and quantum concepts, derived to
understand the atom, and modern and speculative concepts of elementary particle physics like the concept of
supersymmetry are applied.

3. SPECTRA OF NUCLEI

The excitation energy spectra of heavy nuclei, in general, are very complex.  Symmetry considerations,
which, of course, are related to the identification of a limited number of relevant degrees of freedom, provide
a kind of order and thus a means to discuss physics.



3 Heisenberg Lecture: Supersymmetry in the Spectra of Atomic Nuclei

3.1 Even-even Nuclei and the Interacting Boson Approximation
Introductory remarks:
To discuss the structure of an atomic nucleus, a system of (many) protons and neutrons, the canonical

way is to start with the concept of a shell structure, as we know it from the electron shell of the atom.  The
electrons as well as the protons and neutrons have spin s = 1/2, they are Fermions.  This is why each of the
states with all its quantum numbers, the early Heisenberg derived for the hydrogen atom, can be filled only
once, with one electron in the spin-up state and one electron in the spin-down state.  In this way the electron
shells become an extended rigid system.  If energetically nearby orbitals are filled completely we have
spherical, closed shells, where all the orbital and spin angular momenta couple to zero.  If there are no
additional electrons, the atom is inert:  one of the noble gas atoms. Their respective number of electrons are
called "magic" numbers.  For these atoms the energy to remove an electron or to excite an electron into a
higher state is especially large.  The occupied and the empty states are separated by a "shell gap". Thus
atoms with one electron (or two electrons) above the closed shell have a simple structure, they are hydrogen
(or helium) like, so-called alkalis (or earth-alkalis). Their orbital energies derive from a potential which
deviates from the point-charge Coulomb potential but remains spherical.  Referring to a closed shell, also the
atoms with one electron less, the halogens, are easy to discuss:  There is a symmetry in between electron-
particle and electron-hole states.  The interaction of the electrons with each other yields a mean potential
(which is well determined because of the quantum structure of the core and is included in the modified
Coulomb potential) and a residual interaction, which is quite relevant already for the case of helium.

For the atomic nucleus, where we don’t have the central charge, an individual nucleon experiences the
average field from the other nucleons.  As for the atoms, Jensen and Goeppert Mayer identified a shell
structure for the atomic nucleus, too.  Because of a different shape of the effective potential the magic
numbers are different from those for the atom.  The lead isotope 208Pb, with N = 126 and Z = 82, has both a
closed neutron and a closed proton shell.  Correspondingly, the excitation energy of the first excited state is
very high, as for noble gas atoms, while the neighbouring nuclei with one additional or missing nucleon, the
valence nucleon, have excitation spectra of especially simple structure.

The interacting boson model:
If, however, we have to consider nuclei with a large number of valence nucleons we face an extremely

complicated situation:  A many-body system with a strong (and complicated) interaction cannot be calculated
at all. The way out are classical concepts as introduced by Aage Bohr, Mottelson and Weeler, or group
theoretical considerations as introduced by Arima and Iachello (1975) [4]. The aim is to find "simplicity in
complexity", that means to identify a few relevant degrees of freedom.  They start from the observation that
valence neutrons (and protons) are especially strongly bound if they form pairs with total angular momentum
J = 0 or J = 2. Because of the integer values of J these pairs are bosons, the s and d bosons, and considered in
their model, the Interacting Boson Approximation (IBA), as the only relevant degrees of freedom. These
bosons, being either in the s or d state, have, because of the respective 2J+1 magnetic substates, ν = 1+5 = 6
allowed eigenstates, Hence their interaction is treated within the group formalism of U(6) symmetry.

The Hamiltonian, in general, is the sum of a number of terms of lower symmetry than U(6). Allowed
symmetries are U(6), O(6), U(5), O(5), SU(3), O(3), O(2). Each term is the product of a constant giving the
energy scale and a Casimir operator representing the respective group properties. Interesting are those cases
where some of these terms do not appear and the remaining ones form a chain of subsequently broken
symmetry (The U(6) symmetry is broken in a regular way). Then we have analytical solutions both for the
eigenenergies and the eigenstates, determined by a scheme of quantum numbers. The energy scale factors
remain as the only values to be determined.

Comparing, for example, even-even nuclei with an increasing number of neutron and proton holes with
respect to the closed-shell core 208Pb, we observe nuclei with U(5), then O(6) and finally SU(3) structure and
nuclei with structures in between.  Nuclei with a definite symmetry structure are said to exhibit a "dynamical
symmetry". The U(5), and SU(3) dynamical symmetries are related to the vibrational and rotational models
of Bohr and Mottelson.  The intermediate O(6) dynamical symmetry resulted from the group of U(6) as a
prediction.  The discovery that 196Pt, with Z = 78 and N = 118 or Np = 2 and Nn = 4 bosons with respect to
208Pb as core, is well described by O(6) symmetry was one of the big achievements of IBA, compare Fig. 1.



Gerhard GRAW 4

Figure 1:  Excitation spectrum of 196Pt, at the left side the prediction for pure O(6) dynamical symmetry, on the right side the
experimental levels. The model is further supported by the agreement in between predicted and observed  gamma ray transition

probabilities, not shown in this figure.

     The IBA model turned out to be very successful for medium-heavy and heavy nuclei.  I should note
here that especially Romanian physicists contributed very much to reveal the various aspects of these rich
structures.

The case of O(6) dynamical symmetry results from a U(6) ⊃ O(6) ⊃ O(5) ⊃ O(3) group decomposition
and yields a spectrum of excitation energies:

)1()3()4( 3210 +++ττ++σσ+= LLCCCEE (4)

with relations in between the quantum numbers σ, τ, L, which are restricted by Np+Nn.
The formalism is analogue to the case of a rigid rotor in an external magnetic field:  The kinetic energy

of rotation is proportional to the square of the angular momentum l2 and thus invariant against the choice of
all the three spacial coordinates: We have O(3) symmetry. An external magnetic field will break this
symmetry, but invariance against the choice of the two coordinates perpendicular to the field remains.  We
have O(2) symmetry and accordingly the energy spectrum:
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and the relation m = L, L-1, L-2,..., -L in between the quantum numbers.

3.2 Odd-even Nuclei and Supersymmetry
For the description of odd-A nuclei a fermion needs to be coupled to the N boson system.  Because of

the interaction the fermion will create excitations of the core. This can be done within a semi-microscopical
approach which relies on seniority in the nuclear shell model [5].

  An  alternative to this interacting boson-fermion approach is the construction of Hamiltonians
exhibiting dynamical Bose-Fermi symmetries that are analytically solvable.  In both approaches the boson-
fermion space is spanned by the irreducible representation (irrep) [N] × [1] of UB(6)⊗ UF(M), where M is the
dimension of the single-particle space.

A significant step towards unification was made in the early eighties when Iachello and coworkers
embedded the Bose-Fermi symmetry into a graded Lie algebra U(6/M) [6,7]. This is the algebra invented for
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particle physics beyond the standard model, relating to each Boson a Fermion and vice versa. In our case the
supersymmetric algebra is applied to the Hamiltonian, thus we discuss a "dynamical" symmetry.

 The supersymmetric irrep [N}, then, spans a space that describes both an even-even nucleus with N
bosons and an odd-A nucleus with N-1 bosons and an odd fermion.  In some cases, the dynamical super-
symmetry leads to an analytically solvable algebraic Hamiltonian with fixed parameters for both nuclei.  If
this is the case, one concludes that these nuclei exhibit a supersymmetry.

Figure 2:  Level scheme of negative parity states in 195Pt.  The left side shows the theoretical prediction assuming a supersymmetric
dynamical symmetry, with the respective quantum numbers [N1,N2] <Σ1,Σ2> below and (τ1,τ2) left of each band, the right side the
experimental data.  The levels at lower excitation energies are known since some time, those at higher excitation energies originate
from our work, as described in the following.  The model is further supported by the agreement in between predicted and observed
neutron transfer spectroscopic factors.

One successful case is the description of 195Pt within U(6/12), compare Fig. 2, where the model assumes,
that the fermion is restricted to the orbits with j = 1/2, 3/2 and 5/2. Considering those as arising from the
coupling of a pseudo spin part with s' = 1/2 with a pseudo orbital part with l' = 0 and 2, the following
reduction is obtained:  UF(12) ⊃ UF(6)⊗ UF(2) which allows the coupling of the pseudo orbital part with the
bosonic generators at the U(6) level [8]. This supersymmetry can thus be applied in all mass regions
providing that the relevant single particle orbits have j = 1/2, 3/2 and 5/2. Another one is U(6/4) which uses
the isomorphism between the UF(4) group describing the space for a 3/2 fermion, and the bosonic O(6) group
[7]. The experimental level scheme also includes results of our study, discussed below.

In Fig. 2 the surprisingly good agreement between theory and experiment for 195Pt shows convincingly
that supersymmetry predicts in a nearly perfect way the low energy spectrum of this odd-even nucleus.

3.3 Odd-odd Nuclei and the Extended Supersymmetry
A step further is the extended supersymmetry [9], which deals with boson-fermion and neutron-proton

degrees of freedom, allowing the description of a quartet of nuclei, using the same algebraic form of the
Hamiltonian.  The quartet consists of an even-even nucleus with (Nν+Nπ) bosons, an odd-proton and an odd-
neutron nucleus with (Nν+Nπ)-1 bosons and an odd-odd nucleus with (Nν+Nπ)-2 bosons and a proton and
neutron.  This, of course, is an assumption, to see to what an extend symmetry concepts may determine
nature. Thus supersymmetry, if it works, relates the often very complex structure of the odd-odd nucleus to
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the much simpler even-even and odd-A systems.  The only way to study the existence of extended
supersymmetry is to test its predictions for odd-odd nuclei [10].

Our studies in this respect, compare Refs. [1,2,3], is still ongoing.
The aim is to provide such a test for the Uν(6/12)⊗ Uπ(6/4) extended supersymmetry which is described

in Refs. [9,10,11]. In order to be able to exhibit a dynamical symmetry, a physical system has to fulfil certain
conditions.  In the case of extended supersymmetries these constraints strongly limit their occurence.  To be
applicable for the Uν(6/12)⊗ Uπ(6/4) scheme the even-even core should exhibit the O(6) symmetry of the
IBM. The odd proton has to occupy a dominant j = 3/2 orbit and the odd neutron the j = 1/2, 3/2 and 5/2
orbits.  Nuclei exhibiting the O(6) symmetry are found near semi-closed shells like the Xe and Pt region
[12,13]. An isolated j = 3/2 orbit is only found in the case of an occupied 2d3/2 orbit, when nucleons form
three to six holes below the 82 shell closure.  Besides in the sd shell j = 1/2, 3/2 and 5/2 are occupied
together above the 28 shell and below the 126 shell closure.  Thus, for nuclei near stability the
Uν(6/12)⊗ Uπ(6/4) scheme can only occur in the Au, Ir region for the negative-parity states formed by the
ν(3p1/2,3p3/2,2f5/2)×π2d3/2 configurations.  It is encouraging that, indeed, the supersymmetry was observed to
be approximately valid in 198Au [9,14] and 194Ir [11], the two best studied odd-odd nuclei in this mass
region.  However, it was realised from the beginning that the ultimate candidate for the test is the odd-odd
nucleus 196Au [9] since the quartet 194,195Pt, 195,196Au contains the nuclei 194Pt and 195Pt, which are
considered to be the best example of the U(6/12) supersymmetry [15].

If the Hamiltonian is built out of Casimir operators of groups forming a group chain, its eigenvalues are
analytical as a function of the quantum numbers classifying the irreps.  In case of Uν(6/12)⊗ Uπ(6/4) this
leads to the expression [9]:
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with A, B, B', C, D and E being free parameters to set the energy scales and [N1,N2], <Σ1,Σ2>, <σ1,σ2,σ3>,
(τ1,τ2), L, J the quantum numbers correlated to the irreducible representations of U(6), Ō(6), O(6), O(5),
O(3) and Spin(3), respectively.  The reduction rules then lead to the level schemes in the different nuclei.
These can be found in [7,8,11]. In addition to the analytic expressions for the excitation energies the
supersymmetric scheme also provides analytic results for the wave functions.  These do not depend on the
parameters given above and can be tested via the calculation of electromagnetic transition rates and single
particle transfer reaction amplitudes.  Especially the transfer experiments provide a very stringent test of the
existence of supersymmetry via the distribution of single nucleons into the predicted wave functions.

4. RECENT EXPERIMENTS

Although the negative-parity states in 196Au were unknown, except for the 2- ground state, some years
ago a test of the supersymmetric description of this nucleus was indirectly provided via unpolarised transfer
reactions [10,16]. The measured angular distributions of differential cross sections allowed a selective
observation of p and f transfers which populate those states that are provided by the coupling of a neutron
hole, occupying the relevant p1/2, p3/2 or f5/2, f7/2 orbits, to 197Au. Since the experimental level scheme of 196Au
was still poorly known, an experimental study of 196Au was started in a Fribourg/Bonn/Munich collaboration
[1,2,3,19]. The experimental program includes in-beam gamma-ray and conversion electron spectroscopy
following the reactions 196Pt(d,2n) and 196Pt(p,n) at the cyclotrons of the PSI (Villingen, Switzerland) and
the University of Bonn, and, very recently, additional data from γγ correlation studies at the Yale accelerator
[2].

At the MP Tandem accelerator of the Munich Universities high resolution transfer experiments to
196Au were performed, using (p,d), polarised (d→  ,t) and polarised (d→  ,α) reactions [1] . In case of the (p,d) and
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(d→  ,α) experiments, the nucleus 195Pt was measured in parallel in order to obtain a reference data set [3]. The
nuclei were investigated with 26 MeV protons and with ± 60 % vector polarised deuterons, having an energy
of 25 MeV (for the (d→  ,t) reaction) and 18 MeV [for (d→  ,α)]. The beam intensity in the original experiments
was several hundred nA on target.  The targets of 197Au and 196Pt had a thickness of approx. 100 µg/cm2 and
the 198Hg target of 37 µg/cm2. In this year we put in operation a new polarised source, developed by
ourselves, and have ten times more beam to continue this kind of studies.

Figure 3:  Part of the spectra observed at the Q3D magnetic spectrograph for the 198Hg(d
→
 ,α)196Au (upper part) and the

197Au(p,d)196Au (lower part) transfer reactions for a scattering angle of 25° with respect to the beam axis. We used 18 MeV vector
polarised deuterons on a 37 µg/cm2 198Hg target and 26 MeV protons on a 67 µg/cm2 197Au target, respectively. Shown is the

excitation energy range between 0 and 500 keV.

Because of their excellent energy resolution (4 keV FWHM), the (p,d) transfer reactions were used to
provide the energy calibration of the 196Au spectra, using the 195Pt data to establish a correlation between
measured channels and excitation energies.  The achieved uncertainties of the excitation energies are less
than 1 keV. These spectra establish a new and for low excitation energies almost complete level scheme of
196Au. In total, 47 states were resolved for the first time in the energy range of 0 to 1350 keV [19] including
the resolved ground state doublet with an energy spacing of approximately 6 keV, as shown in Fig. 3. These
excitation energies allowed later to set the observed γ transitions [2].

Since the energy resolution of the (d→  ,t) reaction was worse (7 keV FWHM), the spectra were analysed
using the level energies deduced from the (p,d) data.  From the polarised measurement angular distributions
of differential cross sections dσ(θ)/dΩ and analysing powers Ay(θ) are obtained which provide the l and j
values of the angular momentum transfers.  In case of 196Au the neutron shells p1/2, p3/2, f5/2 and f7/2 have to be
considered in the analysis of negative parity states while positive parity states are mainly populated via the
i13/2 transfer leading to a clear distinction of the two parities.  Since the ground state spin of the target nucleus
197Au is JA = 3/2, the angular momenta JB of the final states which are observed by the angular momentum
transfer j are in the range:  |JA - j| ≤ JB ≤ JA + j. Consequently, up to four different j transfers can contribute to
the cross section of an excited state in 196Au. The determination of the contributing transfers and the
respective spectroscopic strengths Glj was done by a numerical fit of the data using the relations:
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with σlj and Aljy the normalised angular distributions of DWBA calculations, Slj the spectroscopic factors and
vj2 the occupation probability of the respective neutron orbit j. Using least-squares fitting, spectroscopic
strengths Glj are obtained. For the low-spin states of interest here, our extended set of data yields almost
complete level schemes of 196Au and 195Pt with definite assignments for 195Pt and assignments or restrictions
on the spins in 196Au depending on the observed j values. Furthermore, the analysis is confirmed by the
additional polarised (d→  ,α) experiment which provided a definite spin assignment for 17 levels, in addition to
a number of 2- and 3- states, assigned because of the observed sequence of j transfers.

5. EXPERIMENTAL RESULTS

     In order to compare the transfer strengths to the theoretical predictions one needs to define the
theoretical transfer operator.  In all calculations made up to now the transfer operator between nuclei having
the same number of bosons N was taken to be the operator aj which creates a fermion in the supersymmetric
models. The advantage of this simple operator is that analytic results can be derived [10]. Nevertheless, the
transfer operator provides a poor description of the observed fragmentation of the strength [16]. Here, we use
a semi-microscopic transfer operator obtained from the mapping of the single-nucleon creation operator onto
the boson-fermion space [18] because the experiment deals with the transfer of a single nucleon.  This yields
in the case of a hole:
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with uj2 = 1-vj2. Kα and Kβ are normalisation constants described in [18]. The semi-microscopic operator
contains the simple operator as a first approximation.  Both depend on the same number of parameters vj.
These parameters are not free but can be obtained from the experiment.  We fixed them by directly using the
197Au(d→  ,t)196Au data to be v1/22 = 0.33(5), v3/22 = 0.30(5) and v5/22 = 0.49(7). The second term in Eq. (9)
induces the additional fragmentation. For 195Pt the comparison of theoretical and experimental level schemes
are shown in Fig. 2 and for 196Au in Fig. 4.

The theoretical spectra are obtained from a common least squares fit of Eq. (6) to levels in 194Pt, 195Pt,
195Au and 196Au and will be presented in more detail in a forthcoming paper [19]. The resulting parameters
are A = 52.5, B = 8.7, B' = -53.9, C = 48.8, D = 8.8 and E = 4.5 (all in keV) [2]. They are close to the original
prediction which did not consider levels of 196Au in the fit [10].

In Fig. 4 for the low energy part of the spectrum of 196Au the data are compared with the prediction
from extended supersymmetry. Even if not all details are reproduced, we observe a surprising over all
agreement.

A further test is provided by the transfer strengths.  The spectroscopic factors vary over orders of
magnitude and are shown in Fig. 5 for the Jπ = 1-, 2-, 3- states in a logarithmic scale. The calculation
reproduces the experimental distributions irrespective of deviations in details, probably due to level mixing.
In addition to the prediction of the very rich excitation spectra this agreement further supports that extended
supersymmetry plays a dominant role, or, stated otherwise, that for the low energy spectrum of these nuclei
symmetry breaking degrees of freedom are remarkably weak.

In view of the extreme complexity of heavy transitional odd-odd nuclei and the few parameters needed
to describe simultaneously and nearly quantitatively almost one hundred excited states in four different
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nuclei, we conclude that the lowest excited states are related by the concept of supersymmetry in atomic
nuclei.  This conclusion is also supported by the fact that the Au, Ir nuclei are situated in the only region of
the nuclear chart where the constraints for Uν(6/12)⊗ Uπ(6/4) are fulfilled.  The question is now raised what
is the microscopic basis that makes supersymmetry valid in atomic nuclei.  Up to now, only few arguments

have been given [20] and one definitely needs more explanations.

Figure 4:   The excitation energy spectra of negative parity states of 196Au.  At the left side the prediction from the model of extended
dynamical supersymmetry, on the right side the experimental levels.  In the theoretical prediction the respective quantum numbers

are also indicated, below each band <σ1,σ2,σ3>, [N1,N2] <Σ1,Σ2> and on the left side of each band (τ1,τ2).

6. SUMMARY

Evidence is observed for the existence of (extended) supersymmetry from the study of the odd-odd
nucleus 196Au using the 197Au(d→  ,t), 197Au(p,d) and 198Hg(d→  ,α) transfer reactions [1] and combining this with
recent information from γγ correlation studies [2]. High resolution 196Pt(p,d)195Pt and 196Pt(d→  ,t)195Pt transfer
experiments performed in parallel yielded at the same time an improved level scheme of 195Pt [3]. Using
extended supersymmetry, a single fit of the six parameter eigenvalue expression yielded a complete
description of all observed low-lying excited states in the four different nuclei forming the supermultiplet.

The detailed comparison of the transfer amplitudes for the states up to 500 keV in the odd-odd member
of the supermultiplet 196Au using a semi-microscopic transfer operator provides evidence that this
description is correct.
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Figure 5:   Comparison of the experimental (top) and theoretical (bottom) neutron transfer strengths for the 1-, 2- and 3- states in
196Au in the energy range of 0 to 600 keV. The resulting correlations are shown by arrows.  Note the logarithmic scale of the plots.
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