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This paper presents the stability properties obtained for semi-active control strategy of the vehicle suspensions. The classical case is studied by direct Lyapunov method and it is shown that the closed-loop system is asymptotically stable, even for a more general class of damping forces, which includes sequential dry friction. It is also analyzed the stability of fuzzy controllers derived from the semi-active balance logic. In this case it is proved that the developed control systems are globally stable on the bases of stability indexes method.
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INTRODUCTION

In the area of vibration isolation the number of works that highlight the advantages of semi-active control has increased in the last years, [6]-[10]. Most of the papers published on this topic studied the performances of the proposed semi-active control strategies for vehicle suspensions, machinery foundations or earthquake protection systems. The semi-active control with dry friction of the ground vehicles suspensions assures better vibration isolation properties than the passive damping, both for deterministic and random excitations, [9]. In addition, the fuzzy control approach derived from the semi-active paradigm of balance logic leads to a reduction of the chattering effect for the same performance index values, [8], [10].

    In this paper the classical and the fuzzy controllers of semi-active suspension with dry friction are studied from the stability point of view. Using reasoning based on Lyapunov function, in the crisp case, it is proven the asymptotic stability of the closed-loop control system. For the fuzzy controllers developed in [8] and [10], is also given a proof for the global stability of control system. 
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This result is based on the theory of stability indices proposed in [1] and [4].

    The paper contains three main sections. The first part consists in the proof of the stability of the classical semi-active control. In the next section the stability indices used for fuzzy case are presented. The third section shows the global stability (both for the single and two degree of freedom vehicle suspension models). The final section includes some general remarks on the methods used in this paper for the stability property proofs.

1. STABILITY OF SDOF MODEL

In this section the stability of a SDOF model of a vehicle suspension with semi-active control is studied.

The proof of stability property is given for a general class of damping forces that includes the sequential dry friction damping.

Consider the system described by:
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where Fd is supposed to be a generic nonlinear controlled damping force of the type:
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subject to the switching law:
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The previous relations can be written as:
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The vehicle suspension with semi-active dry friction is obtained if 
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Using the relation (2), equation (1) has the following form:
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By introducing the state variables 
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, the equation (1’) is equivalent to: 
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Consider the Lyapunov function associated with the first order differential equations (3), (4):
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From the definition it follows directly that V is continuous and positive definite function. The proof of the stability property is based on the following theorem (Barbashin-Krasowsky): 

If 
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 does not include any complete trajectory (except the origin), then the system is asymptotically stable.

The first derivative of V is:
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Using the conditions 
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 it is obvious from (5) that 
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. Next, according to the previous theorem, in order to prove the asymptotic stability, it is sufficient to show that the trajectories of the system (3), (4) are not contained within the abscissa axis. This can be readily verified considering the tangent vector to the trajectory for 
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, hence it is orthogonal to the abscissa axis. Therefore the hypotheses of stability theorem are fulfilled and the equilibrium (0,0) is asymptotically stable.

2. STABILITY INDICES FOR DYNAMICAL SYSTEMS

In this section are shortly presented some results on the stability indices that are useful for studying stability properties of fuzzy control systems [1], [4]. Consider the control system given by:
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where 
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     In case of a linguistic fuzzy control system, the control signal is a map 
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2.1Two dimensional case

     For 
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 the equations (6) and (7) become: 
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Next, is supposed that the following conditions hold: 
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O(0,0) is stable. 

The simplest ways such that the system given by (8), (9) become unstable are static bifurcation and Hopf bifurcation. In order to analyze these two cases is considered the Jacobian matrix of the control system at O(0, 0):
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and characteristic polynomial of J:
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where 
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It is known that 
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 to a Hopf bifurcation Consequently, a measure of the relative stability in origin is given by the following two indices: 
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 are, the greater will be the degree of relative stability of the control system at origin. If one of these indices becomes zero then the system losses the stability property. 

Next is pointed out a measure of how far is the system from the appearing of new attractors out of the origin. This situation is possible to take place only in the subspace defined by: 
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If 
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As one can see, the positive value of 
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 assures the global stability of control system if the local stability property holds. It is important to notice that for two-dimensional case the positive values of the indices 
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2.2 The general case

     Let J be the Jacobian matrix of control system at the origin. The associated characteristic polynomial is
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with 
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A necessary condition for this type of bifurcation is 
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Consequently, if 
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4. STABILITY OF SEMI-ACTIVE SUSPENSION WITH FUZZY CONTROLLER

In this section is studied the stability of fuzzy controllers for semi-active suspensions derived from the semiactive paradigm of balance logic, as in [8] and [10].  

For the case of single degree of freedom (SDOF) suspension system the fuzzy control system described in [8] is considered. The mathematical model of the SDOF semi-active suspension is:
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where m is the sprung mass, 
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 the excitation induced by the road profile and 2( is a dimensionless parameter which scales the friction force magnitude. In a dimensionless form the model equations become:
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If 
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 is fuzzy controller output, then the closed-loop control system has the form:
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In order to test the stability using stability indices the following notations are used:
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In the matrix notation the control system without forcing term is modeled by
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The fuzzy controller with output 
[image: image80.wmf]))

(

'

),

(

(

t

t

y

y

v

 is described by:

· fuzzy partitions as in the figure 1: a) for inputs 
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 ;

· rule base presented in table 1;

· inference procedure - “simplified reasoning method”, see [11];

After some calculations is obtained 
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where a and b are scaling coefficients associated to x1 and x2, respectively. It is easily seen that
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which implies that the Jacobian matrix at origin is J = A.. Therefore 
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Consequently, the closed-loop control system is stable at the origin. In addition, 
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 is an empty set and therefore the control system has no other equilibrium point except the origin. 

Finally, according to the stability indices method, the equilibrium O(0, 0) is globally stable for the considered control system.
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Fig. 1 - Fuzzy partitions of variable domains for SDOF case

    Table 1 Fuzzy rule base for SDOF case
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In the case of two degree of freedom (2DOF) semi-active suspension system, the quarter-car model used in [10] is described by: 
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where  M is a quarter of the body mass, m - mass of the wheel with semiaxis, 
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 - absolute displacement of vehicle body, 
[image: image94.wmf]2

x

 - absolute displacement of the wheel center, 
[image: image95.wmf]2

1

 

,

k

k

 - stiffness coefficients of the suspension and tire, respectively, 
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 - the suspension damping coefficient and u - the output of fuzzy controller. 

Using the notations: 
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then the system can be written in the form (16).

The characteristic equation of the free system is:
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with 
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The corresponding Hurwitz matrix will be:


[image: image102.wmf]÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

=

4

2

3

4

0

1

2

3

0

1

0

0

0

0

0

0

a

a

a

a

a

a

a

a

a

a

H


Next is tested the Routh-Hurwitz criterion: 
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Therefore all eigenvalues of A have negative real part (A is stable).

The main elements of fuzzy controller consist in, [10]:

· input vector 
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 and normalized input Y0 given by 
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· fuzzy partitions of variables domains (denoted by Y1, Y2 for inputs and U for output) depicted in figure 2;

· fuzzy rule base presented in table 2:

· inference procedure - “simplified reasoning method”;



Fig. 2 - Fuzzy partitions of variables domains in 2DOF case

Table 2 Fuzzy rule base for 2DOF case

y20
y10       
NB


NM
NS
Z
PS
PM
PB

NB
Z
Z
Z
Z
B
B
B

NM
Z
Z
Z
Z
M
M
M

NS
Z
Z
Z
Z
S
S
S

Z
Z
Z
Z
Z
Z
Z
Z

PS
S
S
S
Z
Z
Z
Z

PM
M
M
M
Z
Z
Z
Z

PB
B
B
B
Z
Z
Z
Z

For a fuzzy rule of type (Ai, Bi, Ci fuzzy sets on Y1, Y2 and U respectively):

Ri: If y10 is Ai and y20 is Bi then u0 is Ci
with i=1, 2, …, 49 the firing of antecedents will be computed with the fuzzy intersection “product”: 
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 is the abscissa of the set Ci and taking into account the equidistant partitions of domains (
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Finally the expression of 
[image: image114.wmf]0

u

 can be represented graphically as in figure 3.


Fig. 3 - The value of fuzzy control signal u0
Therefore, if 
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Finally, is obtained
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As in the SDOF case 
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 for i=1,.., 4, and therefore J = A. The local stability indices have the following values:
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Again 
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[image: image123.wmf]0

x

=

 is a globally stable equilibrium of the system.

4. CONCLUSIONS

This paper contains an analysis of the stability properties of the semi-active control with sequential dry friction, both for crisp and fuzzy cases derived from the semi-active paradigm of balance logic. In the first situation, the asymptotic stability is proven for a larger class of damping forces that includes as a particular case the sequential dry friction. For the sake of simplicity this study is performed on a SDOF vehicle model, but the proof can be given in the same way for the general case. In the fuzzy case are considered two fuzzy control systems involved in SDOF and 2DOF suspension models. On the basis of stability indices method is shown that both control systems have the global stability property of the corresponding equilibrium points.

As a consequence, one can conclude that semi-active control strategy leads to a stable closed-loop control system, both in classical and fuzzy case.
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