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The present habilitation thesis covers the scientific progress we achieved
in the years 2007-2020, by exploring different topics in partial differential
equations in fluid mechanics, nonlinear water waves, fluid stability and geo-
physical fluid dynamics. The mathematical methods used to handle various
water wave problems are varied and fascinating.

Chapter 2 is devoted to the variational approaches used in the modelling
of water waves and flows. The classical mathematical water wave problem
involves the Euler equations in a free boundary domain, the fluid incom-
pressibility equation and the appropriate boundary conditions. The high
complexity of the full Euler equations, even without taking into account the
Earth’s rotation and the influence of stratification, led mathematicians and
physicists to derive simpler sets of equations convenient to describe the fluid
motion in some specific physical regimes. In order to develop a systematic
approximation procedure, one needs to characterize the full Euler equations
in terms of the sizes of various parameters. The two important parameters
that play a crucial role in the theory of water waves are ε, which measures the
ratio of wave amplitude to undisturbed fluid depth, and δ, which measures
the ratio of fluid depth to wavelength. The amplitude parameter ε is associ-
ated with the nonlinearity of the wave, so that small ε implies a nearly-linear
wave theory. The shallowness parameter δ measures the deviation of the
pressure, in the water below the wave, away from the hydrostatic pressure
distribution. The role of δ independent of ε is useful in the description of
arbitrary amplitude shallow-water waves. Small-amplitude, long-wavelength
(or shallow water) waves are approximated by weakly nonlinear long waves
models such as the Korteweg-de Vries (KdV) and Boussinesq equations. A
series of nonlinear evolution equations (e.g. Green-Naghdi (GN), Camassa-
Holm (CH), Degasperis-Procesi (DP), two-component Camassa-Holm (CH2),
etc.), which constitute more accurate approximations of Euler’s equations
than the classical KdV equation, have been studied intensively during the
last decades. The derivation of simpler sets of equations that model flow
phenomena is done in such a way that the resulting so-called approximate
equations are easier to handle than the full equations but still keep some
of their important structural features such as a variational or Hamiltonian
structure. In the 60-70’s, in a series of pioneering papers, Arnold initiates the
use of geometric variational methods in describing the equations of an ideal
incompressible fluid. The Hamiltonian nature of the Euler equations brings
a number of fundamental results in the mathematical theory of the dynam-
ics of an ideal incompressible fluid, especially in the area of hydrodynamic
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stability. For wave propagation in shallow water, we obtain in the papers
[131, 132, 139, 140] the CH equation (without or with vorticity), the GN
system and the CH2 system, by an interplay of small-parameter expansions
and a variational approach in the Lagrangian formalism. By using the same
method, we derive in [144] a new two-component (N2C) system for propaga-
tion of surface shallow-water waves on irrotational flows. This system has a
noncanonical Hamiltonian formulation and we can also find an exact solitary-
wave solution, which has a different expression from the sech-type solution
obtained for the GN system. The Hamiltonian approach to free surface water
waves dynamics has been put forward for the first time by Zakharov in 1968.
His work for irrotational waves in deep water was extended in 2007-2008
to rotational flows of constant vorticity of finite depth [53, 234, 235]. The
two-dimensional two-layer irrotational gravity water flows with a free surface
have been shown [76] to possess a Hamiltonian formulation too; for the ro-
tational counterpart (with constant vorticity in each layer) the Hamiltonian
approach was developed in [54] for periodic water flows. We show in [158]
that accounting for Coriolis effects in the equatorial f-plane approximation,
for stratified two dimensional periodic water flows with piecewise constant
vorticity, does not hinder the Hamiltonian description of the governing equa-
tions. We use a variational approach combined with methods from harmonic
analysis (Dirichlet-Neumann operators) to pursue our goal.

One fascinating feature of the study of water waves is that their mo-
tion can exhibit elementary patterns, such as, fronts, pulses or periodic wave
trains. Mathematical understanding of these elementary patterns is essential
to gain fundamental insights into the more complex patterns. In Chapter
3, we analyse the travelling wave solutions for some of the important mod-
els that appear in the literature - the GN model, the CH2 model, the N2C
model, the Zakharov-Itō (ZI) model and the Kaup-Boussinesq (KB) model
- for the description of waves in shallow water, propagating on irrotational
flows as well as on shear flows. Although the irrotational models (with con-
siderable advantages in their mathematical analysis) of wave motion yield
many practical results that tell us about the nature of water waves, in reality
there is always some vorticity present in actual wave motion: for wind-driven
waves, waves riding upon a sheared current, or waves near a ship or pier. We
pay special attention to the case when the vorticity is present but has a con-
stant value. For waves which are long compared with the water depth, the
choice of constant vorticity is not just a mathematical simplification but it
is also physically reasonable, since, in this case, the non-zero mean vorticity
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is more important than its specific distribution - see the discussion in [79].
By applying a unified procedure, we derive in [84, 85], the most general
ordinary differential equation describing the whole family of travelling wave
solutions for each of the above two-component models. The existence and
the profile of the travelling waves depend on the values of the constants of
integration, and on the existence, the sign and order of multiplicity of the
roots of some polynomials of degree 3, 4, 5, 6, depending on the model.
Most of the studies devoted to travelling waves are focused on a particular
sub-class of solutions: the solitary waves (pulses), which decay quickly at
infinity along with all their derivatives. We obtain the equations describing
the solitary wave solutions by choosing the constants of integration appropri-
ately. These localized travelling waves, whose shapes do not change as they
propagate along with a constant velocity, are less ubiquitous than the pe-
riodic wave trains but nevertheless represent observable and beautiful wave
patterns. Some of the general equations can be solved analytically to ob-
tain the explicit solutions, but a description of the travelling wave profiles
for all the above models can be made by performing a phase-plane analysis
[84, 85]. A closed curve in the phase-plane yields a periodic travelling wave
solution, a homoclinic orbit gives a pulse type solution and a heteroclinic
orbit in the phase-plane provides a front type solution. For certain values
of the constants, all the above models possess pulses. For the KB system,
we find interesting analytical multi-pulse travelling wave solutions. For the
ZI system, pulse and anti-pulse solutions are obtained. The two-component
Camassa-Holm model, with or without vorticity, possesses front wave solu-
tions too; these front wave solutions decay algebraically in the far field. If
we compare the effects of the vorticity on the pulse waves in the CH2 model
and CH2ω model, we find that the right-going waves propagating in the same
direction as the underlying shear flow have a higher amplitude and narrower
wavelength and the right-going waves for which the underlying shear flow
propagates in the opposite direction are wider, their amplitude decreases.

In Chapter 4 we investigate the motion of water particles under different
types of waves which advance across the water. The classical description of
the particle paths is obtained within the framework of linear water wave the-
ory. The prevalent view was that the particles within periodic wave-trains
travelling across the sea move in closed orbits, elliptic or circular depending
on the depth water (see, for example, [80, 165, 179, 192, 219, 220]). Even
in the linear water wave theory, the ordinary differential equation system
describing the motion of the particles is nonlinear. While in the first approx-
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imation of this system all particle paths appear to be closed, Constantin and
Villari [71] showed, by using phase-plane considerations, that for small ampli-
tude periodic gravity waves no particles trajectory is actually closed, unless
the free surface is flat. A lot of work followed the paper [71], in the framework
of linear theory or in the framework of full nonlinear theory, with similar con-
clusions, see [37, 44, 48, 67, 68, 70, 86, 113, 236]. For small-amplitude water
waves, beside the phase-plane analysis, the exact solutions of the nonlinear
system describing the particle motion allow a better understanding of the
dynamics. We provide in [133, 134, 135, 136, 137, 138, 141] analytic
solutions of the systems describing the particle paths within different types
of small-amplitude progressive water waves, under the effects of gravity and
surface tension, and in the presence or not of the background currents and
vorticity. These solutions are not closed curves: some particle trajectories
are undulating path to the right or to the left, others are loops with for-
ward drift, or with backward drift, some trajectories are peakon-like, others
can follow some peculiar shapes. For small-amplitude waves with constant
vorticity and small-amplitude irrotational deep-water waves, we also make
[138, 141] some remarks on the stagnations points, that is, points where
the vertical component of the fluid velocity field is zero while the horizontal
component equals the speed of the wave profile. The stagnation points are
of special interest because they are points where the flow characteristic often
change. They could be located on the free surface, in this case the wave is
called extreme wave [5, 212, 221, 233], on the bottom or inside the fluid do-
main [70, 86, 193, 236], [138, 141]. The formation of the stagnation points
inside the flow may also be connected with a wave-breaking phenomenon in
deep water.

Geophysical fluid dynamics is the study of fluid motion where the Earth’s
rotation plays a significant role - the Coriolis terms are incorporated into the
governing equations - and applies to a wide range of oceanic and atmospheric
flows [77, 107, 230]. In oceanography, the governing equations appropriate
for motion on a sphere are typically simplified by invoking tangent plane-
approximations - whereby the Earth’s curved surface is locally approximated
by a tangent plane. There is a large literature on equatorial wave dynamics.
In a first approximation, called f -plane approximation, valid within a band
about 2◦ latitude either side of the Equator, the Coriolis parameter is set
to a constant value and the latitudinal variations are not considered. The
β-plane approximation, which applies in regions within 5◦ latitude either side
of the Equator, takes further into account that the Coriolis force may vary
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from point to point and introduces a linear variation with latitude of the
Coriolis parameter. In the first section of Chapter 5, we consider the two-
dimensional equatorial water-wave problem with constant vorticity in the
f -plane approximation. Within the framework of small-amplitude waves,
we derive the dispersion relations and we find the analytic solutions of the
nonlinear differential equation system describing the particle paths below
such waves [157]; the solutions obtained are not closed curves.
Exact solutions of the general governing equations are rather rare and, gener-
ally, they describe ideal conditions that do not correspond to the complexities
of the observed physical behaviour. However, they are precise and clear in
terms of their validity, detail and structure, and they can provide the ba-
sis for more direct relevant analyses. The approach pioneered by Gerstner
to find explicit exact solution for gravity fluid flows within the Lagrangian
framework, was extended to geophysical flows too (see, for example, Con-
stantin [41, 42], the survey [118] and the references therein). In Chapter 5,
we also provide exact implicit Gerstner’s type solutions to the geophysical
edge-wave problem in the f - and β- plane approximations. These solutions,
in the Lagrangian framework, describe geophysical edge waves propagating
westwards or eastwards over a sloping beach with the shoreline parallel to the
Equator and their amplitudes decay exponentially away from the shoreline
[147, 148].
At an arbitrary latitude, Gerstner-like three-dimensional solutions were first
obtained, in the f -plane approximation, by Pollard [211]. In the β-plane
approximation, we obtain in [30] explicit three-dimensional nonlinear solu-
tions for geophysical waves propagating, both eastward and westward, at an
arbitrary latitude, in the presence of a constant underlying background cur-
rent. In the literature, centripetal forces are typically neglected as they are
relatively much smaller than Coriolis forces. The retention of these terms in
the appropriate governing equations increases their mathematical complexity
but plays a central role in facilitating the admission of a wide-range of depth-
invariant underlying currents in their solutions [117]. In [31], we consider the
β-plane governing equations at an arbitrary latitude, modified to incorporate
centripetal forces. We obtain an exact Gerstner-type solution of this prob-
lem, which prescribes three-dimensional geophysical wave propagating, both
eastward and westward, in a relatively narrow ocean strip at an arbitrary
latitude, in the presence of a constant underlying current. The dispersion
relation of the obtained waves features contributions from the Coriolis force,
the centripetal force and the underlying current. We make a detailed dis-
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cussion of the situations encountered in the Northern Hemisphere and the
Southern Hemisphere, for admissible following as well as adverse currents of
physically plausible magnitude.
In the neighbourhood of the Equator, the motion of the ocean constitutes a
very complicated flow system because so many factors are involved (under-
lying non-uniform currents, stratification, upwelling/downwelling processes,
thermoclines, and so on). The Gerstner-type solutions fail to capture strong
depth variations of the flows. We are interested in a mathematical approach
that enables us to capture strong depth variations of the flow only, the den-
sity stratification and the thermocline (the interface separating two adjacent
layers of different constant density) play no role in this section - the depth
of the thermocline (about 200 m for the Equatorial Undercurrent (EUC)) is
short as compared with the average total depth of the ocean (about 4 km
for the Pacific). Some exact, steady solutions, representing purely azimuthal
flows that do not vary in the azimuthal direction were presented and ex-
plored by Constantin and Johnson in [56]; see also the review [170]. In the
last section of Chapter 5, based on the articles [155, 156], we investigate
a nonlinear three-dimensional model for equatorial flows that are moving
slowly in the azimuthal direction, finding exact solutions that capture the
most relevant geophysical features: depth-dependent currents, poleward or
equatorial surface drift and a vertical mixture of upward and downward mo-
tions. The key to the results is a structural feature: two components of the
three-dimensional velocity field can be expressed as nonlinear functional of
the azimuthal velocity component, and therefore this velocity component de-
fines the flow. We analyse in detail some polynomial (up to the third degree)
and exponential azimuthal profiles.

Chapter 6 is devoted to the elegant short-wavelength instability method,
a rigorous mathematical approach to the problem of stability for general
three-dimensional inviscid incompressible flows, developed independently by
Bayly [11], Friedlander & Vishik [98] and Lifschitz & Hameiri [186]. An
essential ingredient of the short-wavelength method, related to geometrical
optics techniques, is to consider the small-wavelength perturbations in the
WKB (Wentzel-Kramers-Brillouin)-form, their evolution in time being gov-
erned up to the remainder terms, terms which are incapable of cancelling the
growth of the leading-order terms, by a system of partial differential equa-
tions formed by the eikonal equation for the wave phase and the transport
equation for the wave amplitude of the velocity. Since the eikonal equation
and the transport equation involve only the advective derivative along the
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velocity field of the flow, these partial differential equations can be written as
ordinary differential equations along the trajectories of the flow. Thus, suffi-
cient instability conditions and necessary stability conditions for the flow are
obtained via the analysis of an ODE system along the trajectories of the flow:
the existence of unbounded solutions to this system implies instability, when
all solutions of this system are bounded it implies stability of the flow with
respect to the class of short-wavelength perturbations; the results have a local
nature being localised along the trajectories. The method was successfully
applied when the basic flow is described in the Lagrangian framework, start-
ing with Leblanc [181] for the Gerstner solution. In [143] we investigate,
by the short-wavelength method, the instability of the edge-wave solution
along a sloping beach, solution obtained in the Lagrangian framework [35].
We prove that the edge waves with the steepness parameter, defined as the
amplitude multiplied by the wavenumber, higher then 7

18
sinα, α being the

sloping angle of the beach, are unstable. The edge-wave solution - originally
considered to be a mathematical curiosity [179], but now recognized to play a
significant role in near-shore hydrodynamics - is still possible if the water has
non-constant density [81, 224, 241]. This remarkable fact is due to the special
character of these waves, namely that in a frame of reference moving with
the waves, the streamlines are also the lines of constant pressure, and thus,
the stratification of the fluid, which makes the density different from stream-
line to streamline but constant on the same streamline, does not disturb the
main structure of the dynamical equations. The short-wavelength method
is successful for barotropic incompressible fluids too [146], and not only for
non-rotating flows but also for equatorial geophysical flows [51, 103, 119],
for equatorial geophysical barotropic flows [149], for geophysical flows at an
arbitrary latitude [30, 31, 150], and for general roating flows in the presence
or not of nonconservative body forces [153, 159]. For other examples in the
geophysical context see the survey [154] and the references therein. The geo-
physical Gerstner-type solutions have been shown to be unstable when the
wave profiles are steep enough. The critical steepness is very close to 1

3
. In

polar regions instability is triggered at a lower steepness threshold than that
for equatorial waves. At arbitrary latitude, the waves which travel from east
to west are more prone to instability than those which travel from west to
east. A constant underlying adverse current favours instability in the sense
that the threshold on the steepness for the wave to be unstable is decreased
compared to the case without current. Conversely, this threshold is increased
by a following current. The presence of underlying depth-dependent currents
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gives us some local stability results. In the case of the exact steady purely
azimuthal flows which model the Equatorial Undercurrent (EUC) and the
Antarctic Circumpolar Current (ACC), the short-wavelength stability anal-
ysis shows that the wave vector vanishes and for some realistic velocity pro-
files, the short-wavelength perturbations evolve stably along the streamlines
of these flows.

Chapter 7 contains plans and directions for future research.
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