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Teză elaborată ı̂n vederea obţinerii atestatului de abilitare ı̂n scopul conducerii lucrărilor
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ABSTRACT. This work presents the main scientific results obtained after defend-

ing the Ph. D. Thesis in the research field: mathematical modeling and application of

variational, asymptotic and optimal control methods in the theoretical study of various

practical problems arising from medicine, biology, engineering sciences. The reference list

contains 50 works published either as sole author or in collaboration. Among these, 5 were

published before the Ph. D. thesis, 42 after the Ph. D. thesis and 3 are in preparation.

For highlighting the continuity of my research activity with respect to the topics of

interest, I begin the presentation with a short discussion concerning the results published

before the Ph. D. thesis, [62]-[66]. The first results of my scientific activity are related

to the study of some free boundary problems. Free boundary problems present further

difficulties because of the presence of an additional unknown: the free boundary. An

important problem of this type is known in the literature as ”the dam problem”. In the

early 70’s, the article [8] introduces a modern method for the study of the dam problem,

method based on the variational inequalities, a new mathematical tool at that time. The

idea proposed in this article was successful and it was followed by an important number

of similar articles, such as: [4], [9], [14], [17], [28]. In 1985 I obtained the first significant

results for the dam problem, in [64]. This work was cited, among other authors, by Prof.

Avner Friedman, author of hundreds of articles in the field of free boundary problems, in

[38]. After almost 30 years after the publication, the article [64] is still cited (see e.g. [30],

[45]).

The present habilitation thesis contains 4 chapters and references. Chapters 1, 2, 3

present the most important results obtained and published after the defendence of the

Ph. D. thesis, classified by topics. The last chapter deals with a short presentation of my

research intentions in the near future. The complete reference list contains 140 works, 50

of them representing the results that I obtained either as sole author, or in collaboration.

Chapter 1 is devoted to the presentation of some free boundary problems. It contains

results that continue the Ph. D. thesis topics, published in [67], [68], [69]. If previously

we talked about the free boundary problem named ”the dam problem”, in [67]-[69] we

introduce another model of free boundary problem: the fluid flow toward a porous wall.

The problem introduced in [67] is a new one, different from those studied in the literature

until then, that have analyzed jet flows, either with classical methods such as hodographic
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method (see, e.g., [15], [37], [39]), or with variational methods ([5], [6]). I studied the

jet flow toward a porous wall, by transforming the problem into a minimum problem. I

obtained existence, uniqueness and monotonicity results. The most important idea of the

article is that we succeed to prove properties of the unknown flow domain by means of

a suitable choice of the test functions in the minimum problem. More precisely, physical

intuitive properties are rigorously proved with pure mathematical arguments. In [68], [69]

we generalize the results of [67] for the cases of the impact of a jet with two immiscible

fluids on a porous wall and, respectively, a jet incident on a porous wall in a gravity field.

Chapter 2 presents optimal control problems, most of them associated with models

from real world. From the rich literature dealing with optimal control, it is very difficult

to select the most suggestive examples. We mention first some general works on optimal

control theory such as [42], [29], [43], [47], [11]. Since we are interested in optimal control

models constructed as direct applications to practical problems we give some articles with

similar topics: [1], [12], [13], [10], [7], [46].

The results presented in this chapter were published in 15 articles and 1 book chapter:

[22]-[26], [70]-[74], [18], [20], [78]-[80] and [75]. In [23], [24] we study from the theoretical

and, respectively, numerical point of view a boundary control problem associated with

stationary Navier-Stokes equations coupled with heat equation, considering for the tem-

perature a general boundary condition of Robin type. The control problem consists in

determining a temperature of the surrounding medium that leads to a desired configura-

tion of the fluid temperature. In [23] we prove the existence of an optimal control and we

obtain the necessary conditions of optimality by introducing a family of penalized optimal

control problems. Using a finite element method, we introduce the discrete optimality

system in order to determine numerically an optimal control and we prove the convergence

of the proposed algorithms in [24].

The problem studied in [25] has direct applications in biology. Starting from the model

of biconvective flow presented in [41], we introduce and study in [25] an optimal control

problem related to biconvective flow. We establish an existence and uniqueness result for

the stationary biconvective flow. The method we use allows us to obtain the existence

of a solution with less restrictive assumptions than in [40]. Moreover, we study a control

problem with the aim of optimize the microorganisms concentration in the culture fluid.
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This article was cited 43 times (according to Google Scholar); we mention: [2], [3], [61].

Another work inspired directly from an effective physical problem is [26]; in this article

we study from the theoretical and numerical points of view an optimal control problem in

heat propagation. This problem corresponds to a situation when some physical quantity

of interest, not directly accessible to measurement, has to be estimated indirectly using

measured data for other, accessible, quantities. This article was cited in works as: [16],

[60].

In [72] we study another optimal control problem associated with the nonlinear coupled

system: Navier-Stokes and heat equations. The choice of the cost functional leads to an

adjoint system which is not divergence free. For overcoming this difficulty, we propose a

method based on the construction of several suitable functions.

The articles [73], [74] present optimal control problems associated with the micropolar

fluid flows. The theory of micropolar fluids introduced in [35] allows the study of some

physical phenomena which cannot be described by the classical Navier-Stokes equations.

In [78], [80] we propose a mathematical model for the blood flow optimization in venous

insufficiency. When a leg vein loses its elasticity, phenomena as stagnation and recirculation

of the blood may appear; these phenomena produce medical complications. We propose

a mathematical model in order to diminish the negative consequences of the lack of vein

elasticity. We begin with a simplified model in [78] and then we generalize the obtained

results in [80].

In many practical problems, different physical characteristics or different solution be-

haviors are coupled across interfaces. Such situations arise in fluid-fluid or fluid-structure

interaction problems, where two domains corresponding to different fluids or to a fluid and

a deformable solid are separated by an interface. In [79] we study a mathematical model

and an optimal control problem associated with the interaction between two non miscible

fluids in a porous medium when on their interface there exists a jump of temperature.

A physical motivation of this model is represented by the groundwater contamination by

organic liquids or the phenomena that appear in a PEM fuel cell.

In the framework of research grants CEEX 189/2006 and CEEX 320/2006 we proposed

and studied mathematical models for describing the complex phenomena that appear in

a polymer electrolyte membrane (PEM) fuel cell. A PEM fuel cell is one of the most
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interesting new energy sources; it consists of several layers of basic cells. In these cells, a

proton conductivity membrane separates the anode and the cathode. During the oxidation

process, the hydrogen dissociates into protons and electrons and the results of this process

are water, heat and electric energy. The results obtained for the mathematical models

associated with these phenomena were published in [18]-[21].

From the 16 works described above, we selected for presentation in Chapter 2 the

articles [20], [79] and [80].

Chapter 3 presents asymptotic methods in the study of micropolar fluid flows and

fluid-structure interaction problems. The results were obtained during my collaboration of

almost 20 years with Prof. Grigory Panasenko from the University Jean Monnet, Saint-

Etienne, France, one of the most important specialists of the world in asymptotic methods.

This collaboration started in the framework of the international grant Eurrommat No.

ICA1-CT-2000-70022, to which I was project leader and materialized in 18 published works

and 3 in preparation.

In [31], [32] we introduce the asymptotic analysis of a micropolar fluid flow through

a wavy periodic tube, with the period and the thickness of order ε, where ε is a small

parameter. The main results announced in [31] are presented and proved in [32]. The so-

lution of the physical problem is approximated by an asymptotic expansion and the error

estimate justifies this asymptotic construction. Then the asymptotic partial decomposi-

tion of the domain(see [48], [49]) is applied for our problem. The article [33] represents a

generalization of [31], [32]. In [33] an asymptotic analysis of a micropolar fluid flow in a

structure with one bundle of tube is performed. The asymptotic analysis for a micropo-

lar fluid flow in a more general, and consequently, more complicated case is presented in

[34]. We consider a micropolar flow in a curvilinear channel, depending on a small pa-

rameter ε. Using a suitable change of coordinates, we replace the initial problem with a

more complicated one, with variable coefficients, but set in a rectangle. We construct the

asymptotic solution using the boundary layer method. The main difficulty in the study of

this problem is determined by the fact that the problem satisfied by the exact solution has

variable coefficients which depend on the small parameter ε while the problems satisfied

by the boundary layer functions must have coefficients independent of ε, since the solution

of these problems must be independent of ε. Another difficulty is that the asymptotic
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solution is not divergence free and we have to construct a divergence free function which

verifies some suitable boundary conditions.

The article [51] represents the first of a sequence of works devoted to the asymptotic

approach for fluid-structure interaction problems. A non steady-state viscous flow in a thin

channel with an elastic wall is considered. The problem depends on two small parameters.

For various ratios of these two small parameters, an asymptotic expansion of a periodic

solution is constructed and justified by a theorem on the error estimates. In [52] we

generalize the results from [51] for the non periodic flow. There is a major difference with

respect to the previous work, since in the periodic case the asymptotic solution verifies the

same boundary conditions as the exact solution, while in the non periodic case the trace of

the asymptotic solution on the lateral boundaries is, in general, different from that of the

exact solution. This leads to the necessity of introducing boundary layer functions and the

problem they satisfy is not standard. The theoretical approach of this case is completed

with some numerical results in [50]. The numerical simulations confirm the theoretical

results highlighting the boundary layer formation near the entry sections. For some of the

last articles I was awarded with the Romanian Academy Prize ”Spiru Haret” for 2008.

The purpose of [53] is to extend the previous results to a more interesting case from

the physical viewpoint. This article presents the asymptotic analysis of a Stokes fluid

flow with variable viscosity in a thin channel with elastic membranes as upper and lower

parts of the boundary. The approach is more difficult in this case since it is necessary to

introduce additional correctors which correspond to the variable viscosity. The asymptotic

construction is rigorously justified by the error estimates between the exact solution and

the asymptotic one. The results obtained in [50]-[53] concern two-dimensional problems.

Since as an application of a viscous fluid flow through a thin elastic tube we have in mind

the blood flow in an artery or vein, it is more interesting to study this problem in 3D

domains. In [54], [55] we study the viscous fluid-elastic structure interaction problem when

the fluid domain is cylindric, by considering an axisymmetric flow.

For treating arterial stenoses, angioplasty is indicated; during angioplasty, a small wire

mesh tube called a stent may be permanently placed in the newly opened artery or vein

to help it remain open. In this way, the boundary of the fluid domain contains elastic

parts and rigid parts, as well, the part where the stent was placed being considered a

6



rigid boundary. In [36] we consider the viscous fluid flow through a domain with mixed

rigid-elastic boundary. The domain contains two rectangular parts with elastic boundaries

connected by a domain with rigid boundaries. We perform a variational analysis of the

problem and we construct the asymptotic solution. The existence of a junction region

between the two rectangles imposes to consider, as part of the asymptotic solution, some

boundary layer correctors that correspond to this region.

In all the works previously presented in this chapter the elastic structure has a much

smaller thickness than the fluid domain dimensions and, for this reason, it was neglected.

In this way, the elastic medium became a part of the fluid domain boundary and so, some

aspects of the physical phenomenon were omitted. In [56]-[58], [44] we analyze from the

variational and asymptotic points of view the viscous fluid-elastic structure interaction

when the thickness of the elastic structure is not neglected anymore. In other words, in

these last four articles the fluid and the elastic medium occupy domains with the same

dimension and the mathematical model is different with respect to that when the elastic

medium was ”a boundary”. In [56], [57] we study the interaction viscous fluid-thin elastic

plate in the case when the rigidity and the density of the elastic medium are ”great”.

More precisely, considering that the thickness of the plate, ε, is the small parameter of the

problem, we suppose that the density and the Young’s modulus are of order ε−1 and ε−3,

respectively. We present a complete asymptotic construction and we prove that the main

term satisfies the problem from [51].

The article [58] represents the generalization of [56], [57]. We present an asymptotic

construction for a viscous fluid-elastic structure interaction problem when the flow domain

is a thin, elastic, cylindrical tube. We study the axisymmetric problem and, like in the

plane case, the asymptotic analysis is performed for a thickness of the tube wall, ε, that

tends to zero, while the density and the Young’s modulus are of the same order as in

[57]. In the three works previously cited, [56]-[58], the fluid density and viscosity are

supposed to be of order 1, which means that the elastic medium density is much greater

that the fluid density. Since in many practical applications the two densities are of the

same order, in [44] the asymptotic analysis was performed for the case when the densities

of the two media are of order 1. In [44] we considered a 3D model of the interaction

between a thin, elastic, stratified plate and a viscous fluid. Like in [56]-[58], the Young’s

7



modulus is considered of order ε−3, but the plate density is of order 1. In these conditions,

an asymptotic expansion of the solution is constructed and justified. The limit problem

contains a non-standard boundary condition for the Stokes equations. The asymptotic

analysis is applied to the partial asymptotic dimension reduction of the solid phase and

the derivation of the asymptotically exact junction conditions between two-dimensional

and three-dimensional models of the plate.

The article [59] represents the first step in the development of the asymptotic analysis

for the Kelvin-Voigt model for a visco-elastic thin stratified strip. The dimension reduction

combined with the homogenization procedure allows to construct a complete asymptotic

expansion of the solution and to justify the one dimensional limit model.

From the works described above, we present with more details in Chapter 3 the articles

[34], [51], [57].

The last part of this abstract is devoted to the description of some elements of my

future research activity, represented by works in preparation or submitted for publication,

which are presented in Chapter 4.

In [85] we study an optimal control problem, with the control in coefficients, with

medical applications. We propose a mathematical model which describes the method for

obtaining a normal blood pressure, controlled by the blood variable viscosity.

The article [81] deals with the asymptotic analysis of the interaction between a thin,

stratified elastic plate and a viscous fluid layer. In [57] we presented this asymptotic analysis

for a certain type of elastic material, characterized by ”great” values of the density and

of the Young’s modulus of the elastic medium, as described above. In [44] the asymptotic

approach is performed considering that only the Young’s modulus has great values, the

solid density being of order one. Since in real life the values of the densities of the solid

and fluid phases may be very different from one medium to another, as well as the values of

the Young’s modulus of the solid phase and the dynamic viscosity of the fluid, the particular

cases analyzed in [57] and [44] represent an important limitation in the study of physical

phenomena. The novelty of [81] is that we propose an asymptotic expansion construction,

rigorously justified by the error estimates, corresponding to various magnitudes (great and

small) of the density and rigidity of the plate and we succeed to solve the limit problems

that are very different from one case to another. In this very general context, the cases
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studied in [57] and [44] represent two particular cases of the 24 cases analyzed in this article.

In [82] we perform an asymptotic analysis in the cylindrical case, without any restriction

concerning the magnitude of the elastic medium characteristics. So, the problem studied

in [58] becomes a particular case of the 6 analyzed in [82].

If in [59] we give some details of the asymptotic analysis for the Kelvin-Voigt model for

a visco-elastic thin stratified strip in the quasi-static case, in [84] these details are developed

and extended to the dynamic case.

Finally, in [83] we consider a fluid layer separated by a 3D thin elastic, stratified plate.

The small parameter of the problem, ε, is defined as the ratio between the plate thickness

and that of one fluid layer. We suppose that the Young’s modulus is of order ε−3, while the

viscosity of the fluid and the densities of the two media are of order one. We present the

variational and asymptotic analysis of the considered model. We analyze the limit problem

that contains a non-standard boundary condition for the Stokes equations.

In the end of the description of my already published works, I mention other articles

that proposed a mathematical model in connection with some mechanical problems of real

world. Between January and June 1995 I got a postdoctoral scholarship at the University

Jean Monnet, Saint-Etienne, France, in the laboratory of Numerical analysis led by Prof.

C. Carasso. The article [27] presents the numerical model proposed for the simulation of

a jet of ink flow. The articles [76], [77] were developed in the framework of the national

grant CERES 4-96/2004, which I coordinated as member of ”Simion Stoilow” Institute

of Mathematics of the Romanian Academy, grant in collaboration with the Metallurgy

Institute. They present the hydrodynamic behavior of the molten powder in meniscus

zone, when the solidifying shell is either rigid, or with elastic properties.

The common feature of my works is represented by the proposal or the identification of

mathematical models that describe as exactly as possible specific physical phenomena, fol-

lowed by the analysis of these models. The more complex is the considered phenomenon,

the more complicated is the associate mathematical model and the more difficult is its

study. That is way, in general, we deal with nonlinear and/or coupled problems for which

we provide qualitative information by using mathematical tools such as: variational for-

mulations, minimization problems, boundary layer methods, fix point theorems, compact
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embeddings, a priori estimates, penalized problems, etc.

The results included in this thesis have been obtained either as sole author, or in

collaboration with professors and researchers from Romania or from abroad, as it can be

seen from the reference list. There are several names of my collaborators that should be

mentioned here, but I’ll limit myself to two of them, which have decisively marked my

professional evolution. These are the late Prof. dr. Horia I. Ene, the scientific adviser of

my Ph. D. thesis and Prof. dr. Grigory P. Panasenko.

The meeting with the first allowed me to begin my scientific career at the Department

of Mathematics of INCREST, a desired position for any young graduate of the Faculty of

Mathematics of those times. The chance of working with the second, one of the world’s

leading specialists in asymptotic methods, woke my interest in this research field and

allowed me to establish a long collaboration that began 18 years ago and materialized in

21 works, with 18 already published.
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