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1 Introduction

Minimal log discrepancies are invariants of singularities of log varieties. A log variety

(X,B) is a normal variety X endowed with an effective Weil R-divisor B, having at

most log canonical singularities. For any Grothendieck point η ∈ X, the minimal log

discrepancy of (X,B) at η is a non-negative real number denoted a(η;X,B). For ex-

ample, a(η;X,B) = 1 − multη(B) for every codimension one point η ∈ X. For higher

codimensional points, minimal log discrepancies can be computed on a suitable resolution

of X.

Let A ⊂ [0, 1] be a set containing 1 and let d be a positive integer. Denote by

Mldd(A) the set of minimal log discrepancies a(η;X,B), where η ∈ X is a Grothendieck

point of codimension d, and (X,B) is a log variety whose minimal log discrepancies

in codimension one belong to A. For example, Mld1(A) = A. In connection to the

termination of a sequence of log flips (see [8, 10]), Shokurov conjectured that if A satisfies

the ascending chain condition, so does Mldd(A). Furthermore, under certain assumptions,
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the accumulation points of Mldd(A) should correspond to minimal log discrepancies of

smaller codimensional points. This is known to hold for d = 2 (Shokurov [9], Alexeev [1])

and for any d in the case of toric varieties without boundary (Borisov [3]). The purpose

of this note is to extend Borisov’s result to the case of toric log varieties. Given the

explicit nature of the toric case, we hope this will provide the reader with some interesting

examples.

In order to state the main result, define Mldtor
d (A) ⊂ Mldd(A) as above, except that we

further require thatX is a toric variety andB is torus invariant. Note that Mldtor
1 (A) = A.

Theorem 1.1. The following properties hold for d ≥ 2:

(1) We have

Mldtor
d (A) = {

s∑

i=1

xiai

∣∣∣∣∣∣∣∣∣∣∣∣∣

2 ≤ s ≤ d

(x1, . . . , xs) ∈ Q
s ∩ (0, 1]s, (a1, . . . , as) ∈ As

index(xi)| index(x1, . . . , x̂i, . . . , xs), ∀1 ≤ i ≤ s

∑s
i=1(1 + (m− 1)xi − 
mxi�)ai ≥ 0 ∀m ∈ Z

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

,

where for a rational point x ∈ Q
n, we denote by index(x) the smallest positive integer

q such that qx ∈ Z
n.

(2) If A satisfies the ascending chain condition, then so does Mldtor
d (A).

(3) Assume that A has no nonzero accumulation points. Then the set of accumulation

points of Mldtor
d (A) is included in

{0} ∪
⋃

1≤d′≤d−1

Mldtor
d′ ({ 1

n
;n ≥ 1} · A).

Equality holds if d = 2, or if { 1
n
;n ≥ 1} · A ⊆ A.

We use the same methods as Borisov [3, 4]. The explicit description in (1) is straight-

forward, whereas the accumulation behaviour in (2) and (3) relies on a result of Lawrence [6]

stating that the set of closed subgroups of a real torus, which do not intersect a given

open subset, has finitely many maximal elements with respect to inclusion.

Finally, we should point out that Mldtor
d (A) is strictly smaller than Mldd(A) in general.

For example, even the set of accumulation points of Mld2(A) (see Shokurov [9] for an

explicit description) is larger than {0} ∪ { 1
n
;n ≥ 1} ·A, the set of accumulation points of

Mldtor
2 (A).

2 Toric log varieties

In this section we recall the definition of minimal log discrepancies and their explicit

description in the toric case. The reader may consult [2] for more details.

A log variety (X,B) consists of a normal algebraic variety X, defined over an alge-

braically closed field k of characteristic zero, endowed with a finite combination B =
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∑
i biBi of Weil prime divisors Bi with non-negative real coefficients bi, such that KX +B

is R-Cartier. Here KX is the canonical divisor of X, computed as the Weil divisor of zeros

and poles (ω)X of a top rational form ω ∈ Ω
dim(X)
k(X)/k ; it is uniquely defined up to linear equiv-

alence. The R-Cartier property of KX + B means that locally on X, there exist finitely

many non-zero rational functions aα ∈ k(X)× and rα ∈ R such that KX +B =
∑

α rα(aα).

Let μ : X ′ → X be a proper birational morphism from a normal variety X ′ and let

E ⊂ X ′ be a prime divisor. Let ω be a top rational form on X, defining KX , and let KX′

be the canonical divisor defined by μ∗ω. The real number

a(E;X,B) = 1 + multE(KX′ − μ∗(KX +B))

is called the log discrepancy of (X,B) at E. For a Grothendieck point η ∈ X, the minimal

log discrepancy of (X,B) at η is defined as

a(η;X,B) = inf
μ(E)=η̄

a(E;X,B),

where the infimum is taken over all prime divisors E on proper birational maps μ : X ′ →
X. This infimum is either −∞, or a non-negative real number. In the latter case, (X,B)

is said to have log canonical singularities at η and the invariant is computed as follows:

By Hironaka, there exists a proper birational morphism μ : X ′ → X such that X ′ is

nonsingular, μ−1(η̄) is a divisor on X ′, and there exists a simple normal crossings divisor∑
iEi on X ′ which supports both μ−1(η̄) and KX′ − μ∗(KX +B). Then

a(η;X,B) = min
μ(Ei)=η̄

a(Ei;X,B).

Next we specialize these notions to the toric case. We employ standard terminology

on toric varieties, cf. Oda [7]. A toric log variety is a log variety (X,B) such that X is

a toric variety and B is torus invariant. Thus there exists a fan Δ in a lattice N such

that X = TN emb(Δ) and B =
∑

i biV (ei), where {ei}i is the set of primitive lattice

points on the one-dimensional cones of Δ and V (ei) ⊂ X is the torus invariant prime

Weil divisor corresponding to ei. The canonical divisor is KX =
∑

i −V (ei), and the

R-Cartier property of KX + B means that there exists a function ψ : |Δ| → R such that

ψ(ei) = 1 − bi for every i, and ψ|σ is linear for every cone σ ∈ Δ. We may assume that

(X,B) has log canonical singularities, which is equivalent to ψ ≥ 0 or bi ∈ [0, 1] for all i.

Let e ∈ Nprim ∩ |Δ| be a non-zero primitive vector. The barycentric subdivision with

respect to e defines a subdivision Δe ≺ Δ and the exceptional locus of the birational

morphism TN emb(Δe) → TN emb(Δ) is a prime divisor denoted Ee. It is easy to see that

a(Ee;X,B) = ψ(e).

Due to this property, ψ is called the log discrepancy function of (X,B).

Minimal log discrepancies of toric log varieties are computed as follows: Since these

are local invariants, we only consider affine varieties and thus Δ consists of the faces of

some strongly convex rational polyhedral cone σ ⊂ NR. We denote X = TN emb(σ).
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Assume first that 0 ∈ X is a torus invariant closed point (it is unique since X is affine).

Using the existence of good resolutions in the toric category, it is easy to see that

a(0;X,B) = min(ψ|N∩relint(σ)).

For the general case, let η ∈ X be a Grothendieck point. There exists a unique face τ ≺ σ

such that η ∈ orb(τ). Let c and d be the codimension of orb(τ) and η in X, respectively.

The induced affine toric log variety

(X ′, B′) = (TN∩(τ−τ) emb(τ),
∑

e∈τ(1)

multV (e)(B)V (e))

has a unique torus invariant closed point 0′, and we obtain

a(η;X,B) = mld(0′;X ′, B′) + d− c.

3 The set of toric minimal log discrepancies

Let A ⊆ [0, 1] be a set containing 1.

Definition 3.1. For an integer d ≥ 1, let Mldtor
d (A) be the set of minimal log discrepancies

a(η;X,B), where η ∈ X is a Grothendieck point of codimension d and (X,B) is a toric

log variety whose minimal log discrepancies in codimension one belong to A.

It is easy to see that Mldtor
1 (A) = A.

Definition 3.2. For an integer d ≥ 2, define Vd(A) to be the set of pairs (x, a) ∈
(0, 1]d × Ad satisfying the following properties:

(i) x ∈ Q
d.

(ii) index(xi)| index(x1, . . . , x̂i, . . . , xd) for 1 ≤ i ≤ d.

(iii)
∑d

i=1(1 + (m− 1)xi − 
mxi�)ai ≥ 0 for all m ∈ Z.

For x ∈ Q
n, index(x) denotes the smallest positive integer q such that qx ∈ Z

n.

Note that property (ii) means that (1, 0, . . . , 0), . . . , (0, . . . , 0, 1) are primitive vectors

in the lattice Z
d + Zx. Also, it is enough to verify property (iii) for the finitely many

integers 1 ≤ m ≤ index(x) − 1. For (x, a) ∈ Vd(A) we denote

〈x, a〉 =
d∑

i=1

xiai.

Proposition 3.3. For d ≥ 2, we have

Mldtor
d (A) =

⋃

2≤s≤d

{〈x, a〉; (x, a) ∈ Vs(A)}.

Proof. (1) We first show that the right hand side is a subset of the left hand side. Fix

(x, a) ∈ Vs(A) for some 2 ≤ s ≤ d.
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If s = d, let N = Z
d + Zx and let σ be the standard positive cone in R

d, spanned

by the standard basis e1, . . . , ed of Z
d. Let 0 ∈ TN emb(σ) be the invariant closed point

corresponding to σ. Then the affine toric log variety

(TN emb(σ),
d∑

i=1

(1 − ai)V (ei))

has minimal log discrepancy at 0 equal to 〈x, a〉. Indeed, the log discrepancy function

ψ =
∑d

i=1 aie
∗
i attains its minimum at x, and ψ(x) = 〈x, a〉. Therefore 〈x, a〉 ∈ Mldtor

d (A).

Assume now that 2 ≤ s ≤ d − 1. Let e1, . . . , ed be the standard basis of Z
d, let

ed+1 = (d− s)e1 + e2 −
∑d

i=s+1 ei, let v =
∑s

i=1 xiei and let N = Z
d + Zv. Let σ be the

cone in R
d generated by e1, . . . , ed+1 and set ai = a1 for s + 1 ≤ i ≤ d and ad+1 = a2.

Then

0 ∈ (TN emb(σ),
d+1∑

i=1

(1 − ai)V (ei))

is a d-dimensional germ of a toric log variety with minimal log discrepancy equal to 〈x, a〉.
Indeed, note first that KX + B is R-Cartier since a2 = (d − s)a1 + a2 −

∑d
i=s+1 a1.

Also, the log discrepancy function is ψ =
∑d

i=1 aie
∗
i and there exists e =

∑d+1
i=1 yiei ∈

N ∩ relint(σ) where the log discrepancy function ψ attains its minimum. We may assume

yi ∈ [0, 1] for every i. If yd+1 /∈ Z, then ys+1 = · · · = yd = yd+1, hence e =
∑s

i=1 yiei.

Therefore ψ(e) ≥ ψ(v). If yd+1 ∈ Z, then
∑s

i=1 yiei ∈ N ∩ relint(σ), hence ψ(e) ≥
ψ(

∑s
i=1 yiei) ≥ ψ(v). We conclude that ψ attains its minimum at v and therefore 〈x, a〉 =

ψ(v) ∈ Mldtor
d (A).

(2) Let (X,B) be a toric log variety with codimension one log discrepancies in A and

let η ∈ X be a Grothendieck point of codimension d. We shall show that a(η;X,B)

belongs to the set on the right hand side.

There exists a unique cone σ in the fan defining X such that η ∈ orb(σ). Let c be the

codimension of orb(σ) in X. Then a(η;X,B) coincides with the minimal log discrepancy

of the toric log variety

(TN∩(σ−σ) emb(σ),
∑

e∈σ(1)

multV (e)(B)V (e)) × A
d−c
k .

in the invariant closed point 0. Therefore we may assume that X is affine and η is a torus

invariant closed point 0.

We have X = TN emb(σ), with dimσ = dimN = d, B =
∑

i∈I(1 − ai)V (ei) with

ai ∈ A for every i. The log discrepancy function ψ ∈ σ∨ of (X,B) satisfies ψ(ei) = ai,

and we have

mld(0;X,B) = min(ψ|N∩relint(σ)).

There exists e ∈ N∩relint(σ) such that mld(0;X,B) = ψ(e). By Carathéodory’s Theorem

(see [7], Theorem A.15), there exists a subset {1, . . . , s} ⊆ I, with 2 ≤ s ≤ d, such

that e1, . . . , es are linearly independent and e belongs to the relative interior of the cone

spanned by e1, . . . , es. Let e =
∑s

i=1 xiei, and denote x = (x1, . . . , xs) ∈ (0, 1]d, a =

(a1, . . . , as) ∈ Ad. It is clear that mld(0;X,B) = 〈x, a〉, and we claim that (x, a) ∈ Vs(A).
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Indeed, it is clear that x ∈ Q
s. Since ei is a primitive lattice point of N , it is also

primitive in the sublattice
∑s

i=1 Zei+Ze, which is equivalent to index(xi)| index(x1, . . . , x̂i,

. . . , xs) for every 1 ≤ i ≤ s. Finally, let m ∈ Z. We have
∑s

i=1(1 + mxi − 
mxi�)ei ∈
N ∩ relint(σ), hence ψ(

∑s
i=1(1 +mxi − 
mxi�)ei) ≥ ψ(e). Equivalently,

∑s
i=1(1 + (m−

1)xi − 
mxi�)ai ≥ 0 and therefore (x, a) ∈ Vs(A). �

4 The set Ṽd(A)

By Proposition 3.3, the limiting behaviour of toric minimal log discrepancies is controlled

by the limiting behaviour of the sets Vd(A). The rationality properties (i) and (ii) defining

Vd(A) do not behave well with respect to limits, and for this reason we enlarge Vd(A) to

a new set Ṽd(A), defined only by property (iii), which turns out to have good inductive

properties and limiting behaviour.

Definition 4.1. Let A ⊆ [0, 1] be a subset containing 1. Define

Ṽd(A) = {(x, a) ∈ (0, 1]d × Ad;
d∑

i=1

(1 + (m− 1)xi − 
mxi�)ai ≥ 0,∀m ∈ Z}.

Equivalently, Ṽd(A) is the set of pairs (x, a) ∈ (0, 1]d×Ad such that the group Z
d +Zx

does not intersect the set {y ∈ (0, 1]d; 〈y − x, a〉 < 0}. As before, we denote 〈x, a〉 =∑d
i=1 xiai.

Lemma 4.2. The following equality holds

Ṽ1(A) = ((0, 1] × {0}) ∪ ({ 1

n
;n ≥ 1} × A),

where the first term is missing if 0 /∈ A. In particular,

{〈x, a〉; (x, a) ∈ Ṽ1(A)} =
∞⋃

n=1

1

n
· A.

Proof. Let x ∈ (0, 1] such that 1+(m−1)x−
mx� ≥ 0 for every integer m. Equivalently,

we have

sup
m∈Z

(
mx� −mx) ≤ 1 − x.

Assume by contradiction that x /∈ Q. Then the set {
mx� − mx}m≥1 is dense in [0, 1]

(cf. [5], Chapter IV), hence supm∈Z
(
mx� −mx) = 1. We obtain 1 ≤ 1− x, hence x = 0,

a contradiction.

Therefore x = p
q
, for integers 1 ≤ p ≤ q with gcd(p, q) = 1. The above inequality

becomes

1 − 1

q
= max

m∈Z

(
mx� −mx) ≤ 1 − p

q
,

hence p = 1. Therefore x = 1
q
. �
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We will need the following result of Lawrence. Note that property (ii) is a consequence

of (i).

Theorem 4.3 ([6]). Let T = R
d/Zd be a real torus.

(i) Let U ⊂ T be an open subset. The set of closed subgroups of T which do not intersect

U has only finitely many maximal elements with respect to inclusion.

(ii) The set of finite unions of closed subgroups of T satisfies the descending chain con-

dition.

Theorem 4.4. Assume that A satisfies the ascending chain condition. Then the set

{〈x, a〉; (x, a) ∈ Ṽd(A)} satisfies the ascending chain condition.

Proof. Assume first that d = 1. By Lemma 4.2,

{〈x, a〉; (x, a) ∈ Ṽ1(A)} = { 1

n
;n ≥ 1} · A.

Both sets { 1
n
;n ≥ 1} and A are nonnegative and satisfy the ascending chain condition,

hence their product satisfies the ascending chain condition.

Now suppose d ≥ 2 and assume by induction the result holds for smaller values of d.

Assume by contradiction that {(xn, an)}n≥1 is a sequence in Ṽd(A) such that

〈xn, an〉 < 〈xn+1, an+1〉 for n ≥ 1.

Since A satisfies the ascending chain condition, we may assume after passing to a subse-

quence that

an
i ≥ an+1

i ,∀n ≥ 1,∀1 ≤ i ≤ d.

Assume first that xn /∈ (0, 1)d for infinitely many n’s. After passing to a subsequence,

we may assume xn
1 = 1 for every n. Write xn = (1, x̄n) and an = (an

1 , ā
n). Then

〈x̄n, ān〉 < 〈x̄n+1, ān+1〉 for every n ≥ 1, which contradicts the ACC property of the set

{〈x̄, ā〉; (x̄, ā) ∈ Ṽd−1(A)}.
Assume now that xn ∈ (0, 1)d for every n. We set

Un = {x ∈ (0, 1)d; 〈x− xn, an〉 < 0}

and regard Un as an open subset of the torus T d = R
d/Zd. Let Xn be the union of the

subgroups of T d which do not intersect Un. By Theorem 4.3.(i), Xn is a finite union of

closed subgroups of T d. It is easy to see that Un ⊆ Un+1, hence Xn ⊇ Xn+1 for n ≥ 1.

Since (xn, an) ∈ Ṽd(A), we have Un ∩ (Zd + Zxn) = ∅. Therefore xn ∈ Xn for every n.

We have

〈xn, an+1〉 ≤ 〈xn, an〉 < 〈xn+1, an+1〉.
Then xn ∈ Un+1, hence xn /∈ Xn+1. Therefore Xn

� Xn+1 for every n ≥ 1, contradicting

Theorem 4.3.(ii). �



F. Ambro / Central European Journal of Mathematics 4(3) 2006 358–370 365

Lemma 4.5. The following properties hold:

(1) If A is a closed set, then Ṽd(A) is a closed subset of (0, 1]d × Ad.

(2) Identify (0, 1]s with the face xs+1 = · · · = xd = 1 of (0, 1]d. Then

Ṽd(A) ∩ (0, 1]s = Ṽs(A).

(3) Identify [0, 1]s with the face xs+1 = · · · = xd = 0 of [0, 1]d and assume that A is a

closed set. Then

Ṽd(A) ∩ (0, 1]s = Ṽs(A).

Proof. (1) Let (x, a) ∈ (0, 1]d × Ad such that there exists a sequence {(xn, an)}n≥1 in

Ṽd(A) with x = limn→∞ xn and a = limn→∞ an. Fix m ∈ Z. By assumption, we have

d∑

i=1

(1 + (m− 1)xn
i − 
mxn

i �)an
i ≥ 0,∀n ≥ 1.

There exists a positive integer n(m) such that 
mxn
i � ≥ 
mxi� for every 1 ≤ i ≤ d and

every n ≥ n(m). Therefore

d∑

i=1

(1 + (m− 1)xn
i − 
mxi�)an

i ≥ 0,∀n ≥ n(m),

Letting n tend to infinity, we obtain

d∑

i=1

(1 + (m− 1)xi − 
mxi�)ai ≥ 0.

Since m was arbitrary, we conclude that (x, a) ∈ Ṽd(A).

(2) This is clear.

(3) Assume that we have a sequence {(xn, an)}n≥1 ⊂ Ṽd(A) such that limn→∞ xn =

(x, 0, . . . , 0) ∈ (0, 1]s and limn→∞ an = (a, as+1, . . . , ad). Let m be a positive integer. Note

that for s+ 1 ≤ i ≤ d we have mxn
i ∈ (0, 1] for n ≥ n(m), hence

lim
n→∞

(1 + (m− 1)xn
i − 
mxn

i �) = 0 for s+ 1 ≤ i ≤ d.

Therefore
∑s

i=1(1 + (m− 1)xi −
mxi�)ai ≥ 0 for every m ≥ 1. Since Z
s + Zx is included

in the closure of Z
d + Z≥0x, we obtain

∑s
i=1(1 + (m − 1)xi − 
mxi�)ai ≥ 0 for m ≤ −1

as well. Therefore (x, a) ∈ Ṽs(A), proving the direct inclusion.

For the converse, just note that (x, a) ∈ Ṽs(A) is the limit of the sequence ((x, 1
n
, . . . , 1

n
),

(a, 1, . . . , 1)) ∈ Ṽd(A). �

Definition 4.6. For x ∈ R and m ∈ Z, define

x(m) = 1 +mx− 
mx�.
Note that this operation induces a selfmap of the half-open interval (0, 1]. For x ∈ R

d

and m ∈ Z, define x(m) ∈ R
d componentwise.
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Since (0, 1]d ∩ (Zd + Zx) = {x(m);m ∈ Z}, we have the equivalent description

Ṽd(A) = {(x, a) ∈ (0, 1]d × Ad; 〈x(m) − x, a〉 ≥ 0,∀m ∈ Z}.

Lemma 4.7. Let x ∈ (0, 1]d and let a ∈ Ad such that ai > 0 for 1 ≤ i ≤ d. Then

there exists a relatively open neighborhood x ∈ U ⊆ (0, 1]d such that if y ∈ U and

〈y(m) − x, a〉 ≥ 0 for every m ∈ Z, then 〈y − x, a〉 = 0.

Proof. (1) Assume first that x ∈ (0, 1)d. By Theorem 4.3.(ii), the set of closed subgroups

of R
d which contain Z

d and do not intersect the nonempty open set {y ∈ (0, 1)d; 〈y −
x, a〉 < 0} has finitely many maximal elements with respect to inclusion, say H1, . . . , Hl.

If x ∈ H1, then H1 is a rational affine subspace of R
d in an open neighborhood

x ∈ U1 ⊂ (0, 1)d. Let v ∈ H1 − x. Since x ∈ (0, 1)d, there exists ε > 0 such that x+ tv ∈
H1 ∩ (0, 1)d for |t| < ε. In particular, 〈x + tv − x, a〉 ≥ 0, that is t〈v, a〉 ≥ 0 for |t| < ε.

We infer that 〈v, a〉 = 0. Therefore H1 ∩ U1 is contained in {y ∈ (0, 1)d; 〈y − x, a〉 = 0}.
If x /∈ H1, then U1 = (0, 1)d \H1 is an open neighborhood of x.

Repeating this procedure, we obtain a neighborhood Ui of x, for each closed subgroup

Hi. The intersection U = U1 ∩ · · · ∩ Ul is the desired neighborhood.

(2) We may assume after a reordering that xi = 1 for 1 ≤ i ≤ s and xi ∈ (0, 1) for

s < i ≤ n. If s = n, we may take U = (0, 1]d. Assume now that s < n. By [5], Chapter

IV, there exists a negative integer m0 such that

〈x(m0) − x, a〉 < s

min
i=1

ai.

Let y ∈ (0, 1]s × ∏d
i=s+1(

�m0xi�
m0

, �m0xi�−1
m0

) such that 〈y(m) − x, a〉 ≥ 0 for every m ∈ Z.

We claim that y1 = · · · = ys = 1. Indeed, assume by contradiction that yj < 1 for some

1 ≤ j ≤ s. A straightforward computation gives

〈y(m0) − x, a〉 −m0〈y − x, a〉 = 〈x(m0) − x, a〉 +
d∑

i=1

(
m0xi� − 
m0yi�)ai.

By the choice of y, we obtain

d∑

i=1

(
m0xi� − 
m0yi�)ai =
s∑

i=1

(m0 − 
m0yi�)ai ≤ −aj,

hence 0 ≤ 〈x(m0) − x, a〉 − aj. This contradicts our choice of m0.

Let x̄ = (xs+1, . . . , xd), ȳ = (ys+1, . . . , yd), ā = (as+1, . . . , ad). We have (x̄, ā) ∈
Ṽd−s(A) and 〈ȳ(m) − x̄, ā〉 ≥ 0 for every m ∈ Z. From Step 1, there exists an open

neighborhood x̄ ∈ Ū ⊂ (0, 1)s such that if ȳ ∈ Ū then 〈ȳ − x̄, ā〉 = 0. Then

U = (0, 1]s × (Ū ∩
d∏

i=s+1

(

m0xi�
m0

,

m0xi� − 1

m0

)).

satisfies the required properties. �
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Lemma 4.8. The following equality holds for d ≥ 1 and a ∈ Ad:

{〈x, a〉; (x, a) ∈ Ṽd(A), x ∈ Q
d} = {〈x, a〉; (x, a) ∈ Ṽd(A)}.

Proof. Let (x, a) ∈ Ṽd(A). We have x1, . . . , xs < 1 and xs+1 = . . . = xd = 1, where

0 ≤ s ≤ d. If s = 0, then x ∈ Q
d and we are done. Assume s ≥ 1 and set x̄ = (x1, . . . , xs)

and ā = (a1, . . . , as). Then (x̄, ā) ∈ Ṽs(A). Since x̄ ∈ (0, 1)s, there exists a closed

subgroup Z
s ⊆ H̄ ⊆ R

s such that x̄ ∈ H̄ ∩Ux̄ ⊂ {z̄; 〈z̄− x̄, ā〉 = 0}, by Step 1 of the proof

of Lemma 4.7. Since H̄ is rational, there exists z̄ ∈ Q
s ∩H ∩ Ux̄. Set x′ = (z̄, 1, . . . , 1).

Then (x′, a) ∈ Ṽd(A), 〈x, a〉 = 〈x′, a〉 and x′ ∈ Q
d. �

Proposition 4.9. Assume that A has no positive accumulation points. Then the set of

accumulation points of {〈x, a〉; (x, a) ∈ Ṽd(A)} is

{0} ∪
⋃

1≤d′≤d−1

{〈x, a〉; (x, a) ∈ Ṽd′(A)}.

Proof. Let r > 0 be an accumulation point, that is there exists a sequence (xn, an) ∈
Ṽd(A) with r = limn→∞〈xn, an〉 and r �= 〈xn, an〉 for every n ≥ 1. By compactness, we

may assume after passing to a subsequence that limn→∞ xn = x ∈ [0, 1]d and limn→∞ an =

a ∈ [0, 1]d exist. We have r = 〈x, a〉.
We claim that aixi = 0 for some i. Indeed, assume by contradiction that aixi > 0

for every 1 ≤ i ≤ d. Since A has no nonzero accumulation points, we obtain an = a

for n ≥ 1. Let Ux ⊂ (0, 1]d be the relative neighborhood of x associated to (x, a) in

Lemma 4.7. Then xn ∈ Ux for n ≥ n0. If 〈xn − x, a〉 ≥ 0, then (xn, a) ∈ Ṽd(A) implies

that 〈z − x, a〉 ≥ 0 for every z ∈ (Zd + Zxn) ∩ (0, 1]d. Therefore 〈xn − x, a〉 = 0. This

means 〈xn, a〉 = r, a contradiction.

Therefore 〈xn, a〉 < r for every n. Since A has no positive accumulation points, it

satisfies the ascending chain condition. Therefore the sequence (〈xn, a〉)n≥1 satisfies the

ascending chain condition as well, by Theorem 4.4. This is a contradiction.

We may assume aixi > 0 for 1 ≤ i ≤ d′ and aixi = 0 for d′ + 1 ≤ i ≤ d. We

have d′ ≥ 1, since 〈x, a〉 > 0. Denote x̄ = (x1, . . . , xd′) and ā = (a1, . . . , ad′). We have

r = 〈x̄, ā〉 and (x̄, ā) ∈ Ṽd′(A) by Theorem 4.5.

For the converse, note that

((
1

k
, . . . ,

1

k
), (1, . . . , 1)) ∈ Ṽd(A)

and 〈( 1
k
, . . . , 1

k
), (1, . . . , 1)〉 = d

k
accumulates to 0. Let now (x, a) ∈ Ṽd′(A) for 1 ≤ d′ ≤

d − 1. Define xk = (x′, 1
k
, . . . , 1

k
) and a = (a′, 1, . . . , 1). Then (xk, a) ∈ Ṽd(A) and

〈xk, a〉 = 〈x′, a′〉 + d−d′
k

accumulates to 〈x′, a′〉. �

Remark 4.10. Proposition 4.9 is false if A has a positive accumulation point. For

example, let a > 0 be an accumulation point of a sequence of elements ak ∈ A. Then

((1, . . . , 1), (ak, 1, . . . , 1)) ∈ Vd(A) and 〈(1, . . . , 1), (ak, 1, . . . , 1)〉 accumulates to d− 1 + a,

which clearly does not correspond to any element of Ṽd′(A), for d′ ≤ d− 1.
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The set Ṽd(A) is strictly larger that Vd(A). For example, (1
2
, 1) and ( l−1

2l
, 1

l
) (l ≥ 2)

are rational points of Ṽd({1}) \ Vd({1}). However, the following property holds.

Lemma 4.11. The following inclusion holds:

{〈x, a〉; (x, a) ∈ Ṽd(A)} ⊆ {〈x, a〉; (x, a) ∈ Vd({ 1

n
;n ≥ 1} · A)}.

Proof. Let r = 〈x, a〉 for some (x, a) ∈ Ṽd(A). By Lemma 4.8, we may assume that

x ∈ Q
d. We may assume ai > 0 for every i. Let e1, . . . , ed be the standard basis of R

d,

spanning the standard cone σ, let e =
∑d

i=1 xiei and let N =
∑d

i=1 Zei + Ze. If we set

ψ =
∑d

i=1 aie
∗
i , then we have

min(ψ|N∩relint(σ)) = ψ(e) = r.

There exists positive integers ni ≥ 1 such that e′i = 1
ni
ei are primitive elements of the

lattice N . In the new coordinates, we have ψ =
∑d

i=1
ai

ni
e′i

∗ and e =
∑

i=1 nixie
′
i. Since ψ

attains its minimum at e and all ai’s are positive, we infer that nixi < 1 for every i. Set

a′i = ai

ni
and x′i = nixi. Then (x′, a′) ∈ Vd({ 1

n
;n ≥ 1} · A) and 〈x′, a′〉 = r. �

Corollary 4.12. Assume that A = { 1
n
;n ≥ 1} · A. Then

{〈x, a〉; (x, a) ∈ Vd(A)} = {〈x, a〉; (x, a) ∈ Ṽd(A)}.

5 Accumulation points of Mldtor
d (A)

Theorem 5.1. The following properties hold:

(1) If A satisfies the ascending chain condition, then so does Mldtor
d (A).

(2) Assume that A has no positive accumulation points. Then the set of accumulation

points of Mldtor
d (A) is included in

{0} ∪
⋃

1≤d′≤d−1

Mldtor
d′ ({ 1

n
;n ≥ 1} · A).

The inclusion is an equality if { 1
n
;n ≥ 1} · A ⊂ A.

(3) Assume that A has no positive accumulation points and { 1
n
;n ≥ 1} · A ⊂ A. Then

Mldtor
d (A) is a closed set if and only if 0 ∈ A.

Proof. The inclusion Vd(A) ⊂ Ṽd(A) and Proposition 3.3 give

Mldtor
d (A) ⊆

⋃

2≤d′≤d

{〈x, a〉; (x, a) ∈ Ṽd′(A)}.

(1) The set Mldtor
d (A) is a subset of a finite union of sets satisfying the ascending chain

condition, by Theorem 4.4. Therefore Mldtor
d (A) satisfies the ascending chain condition.
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(2) Assume that A has no nonzero accumulation points. By Proposition 4.9 and

Lemma 4.11, the accumulation points of Mldtor
d (A) belong to the set

{0} ∪
⋃

1≤d′≤d−1

Mldtor
d′ ({ 1

n
;n ≥ 1} · A).

Assuming moreover that { 1
n
;n ≥ 1} · A ⊆ A, we will show that all points of the above

set are accumulation points of Mldtor
d (A). If (x, a) ∈ Vd′(A), then

((x, 1, . . . , 1), (a,
1

n
, . . . ,

1

n
)) ∈ Vd(A),

and 〈(x, 1, . . . , 1), (a, 1
n
, . . . , 1

n
)〉 = 〈x, a〉 + d−d′

n
accumulates to 〈x, a〉. Similarly,

((1, 1, . . . , 1), (
1

n
,
1

n
, . . . ,

1

n
)) ∈ Vd(A)

and 〈(1, 1, . . . , 1), ( 1
n
, 1

n
, . . . , 1

n
)〉 = d

n
accumulates to 0. This proves the claim.

(3) Assume that Mldtor
d (A) is a closed set. Since

((
1

k
, . . . ,

1

k
), (a, . . . , a)) ∈ Vd(A),

we infer that 0 = limk→∞ da
k
∈ Mldtor

d (A), which implies 0 ∈ A.

Conversely, assume 0 ∈ A. If (x, a) ∈ Vd′(A) then

((x, 1, . . . , 1), (a, 0, . . . , 0)) ∈ Vd(A)

and 〈(x, 1, . . . , 1), (a, 0, . . . , 0)〉 = 〈x, a〉. We infer from (3) that Mldtor
d (A) is a closed set.

�

Lemma 5.2. Assume that A has no positive accumulation points. Then the following

properties hold:

(1) The set of accumulation points of Mldtor
2 (A) is {0} ∪ ⋃

k≥1
1
k
A.

(2) The set Mldtor
2 (A) is closed if and only if 0 ∈ A.

Proof. (1) From Theorem 5.1, all accumulation points are of this form. Conversely, fix

a ∈ A and k ∈ Z≥1. Then (( 1
kn+1

, n
nk+1

), (a, a)) ∈ V2(A) is a sequence converging to

((0, 1
k
), (a, a)), hence a

k
is an accumulation point of Mldtor

2 (A). Since k is arbitrary, we

infer that 0 is an accumulation point as well.

(2) Assume that Mldtor
2 (A) is a closed set. Then 0 ∈ Mldtor

2 (A), which implies 0 ∈ A.

Assume now that 0 ∈ A. Then for a ∈ A and k ∈ Z≥1 we have

a

k
= 〈(1

k
,
1

k
), (0, a)〉 ∈ Mldtor

2 (A).

From (1), these are all possible accumulation points, hence Mldtor
2 (A) is a closed set. �
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