
Variation of Log Canonical Thresholds in Linear Systems

Florin Ambro

Institute of Mathematics “Simion Stoilow” of the Romanian Academy,
P.O. BOX 1-764, RO-014700 Bucharest, Romania

Correspondence to be sent to: e-mail: florin.ambro@imar.ro

Dedicated to the memory of Prof. Şerban Basarab

We investigate the variation of log canonical thresholds in (graded) linear systems. For

toric log Fano varieties, we give a sharp lower bound for log canonical thresholds of the

anticanonical members in terms of the global minimal log discrepancy.

1 Introduction

An interesting question in the classification theory of algebraic varieties is the conjec-

ture of Alexeev and Borisov brothers: (singular) Fano varieties X of fixed dimension d

and with minimal log discrepancy mld(X)≥ ε > 0, belong to a bounded family. This con-

jecture is known if d= 2 [1] or X is a toric variety [8]. To a Fano variety X we associate

the α-invariant

γ (X)= inf
{

lct
(

X; Dn

n

)
; n≥ 1, Dn ∈ | − nKX|

}
.

It is known that γ (X) · d
√
(−KX)d ≤ d, so the anticanonical volume is bounded above if

the α-invariant is bounded away from zero. It follows that the above conjecture reduces
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to two local statements: (i) a lower bound γ (X)≥ γ (d, ε) > 0 and (ii) an upper bound r ≤
r(d, ε) for the smallest integer r ≥ 1 such that rKX is Cartier. The first aim of this paper

is to propose a sharp lower bound γ (d, ε), and to establish it in the toric case.

Theorem 1.1. Let (X, B) be a toric log Fano variety, with dim X = d and mld(X, B)≥ 1
q ,

for some integer q ≥ 1. Then

γ (X, B)= inf
{

lct
(

X, B; Dn

n

)
; n≥ 1, Dn ∈ | − nKX − nB|

}
≥ q

ud+1,q
,

where (up,q)p,q≥1 is the sequence of integers defined recursively by u1,q = q,up+1,q =
up,q(1 + up,q). �

Theorem 1.1 is sharp (see Example 6.3). An interesting feature is that the type of

coefficients of B do not matter. We expect the same bound holds in the non-toric case.

This is easy to see in dimension one, but unclear in dimension two.

The α-invariant can be localized, and defined for polarized log varieties (X, B; H).

One defines

γP (X, B; |nH |)= inf
D∈|nH |

lctP (X, B; D) ,

γP (X, B; H)= infn≥1 n · γP (X, B; |nH |) and γ (X, B; H)= infP∈X γP (X, B; H). The second aim

of the paper is to study the variation of lctP (X, B; D) in the variables P , D, as sug-

gested in [3]. The variation of lct(X, B; D) in the variable D is implicit in the work of

Viehweg [20, Sections 5.3, 8.2], where it is assumed that B = 0 and X has Kawamata log

terminal singularities, and lct(X,0; D) is replaced by e(X,0; D), the largest positive inte-

ger e such that 1
e < lct(X,0; D). We extend Viehweg’s results to the setting of families of

log varieties (X, B). We show that log canonical thresholds are lower semi-continuous

in flat families. In particular, lctP (X, B; D) is lower semi-continuous in two variables

(P , D) ∈ X × |nH |. By projection on to the second factor, we obtain extensions to the log

category of the semi-continuity results of Varchenko [19] and Demailly and Kollár [11].

By projection on to the first factor, we obtain that P �→ γP (X, B; |nH |) is lower semi-

continuous and takes only finitely many values. It would be interesting to find out if the

same holds for the asymptotic version P �→ γP (X, B; H).

We outline the structure of this paper. In Section 2, we introduce families of log

varieties, a logarithmic version of Viehweg’s moduli functor (see [13] for a presentation

of Viehweg’s and Kollár’s moduli functors). We define the boundary of a family only on
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the smooth locus of the family, not on the whole total space (compare with [2]). The

main result is the openness of the locus where the fibers have log canonical singulari-

ties (Theorem 2.8). It follows that log canonical thresholds are semi-continuous in flat

families (Corollary 2.10).

In Section 3, we study the variation of log canonical thresholds lctP (X, B; D) in

P and D, where D moves in a linear system. The results follow from those of Section 1

applied to the universal divisor of the linear system. We also generalize the product

theorem of Viehweg to distinct factors (Theorem 3.7). To an N-graded convex family of

linear systems Λ• on a given log variety (X, B), we associate the local α-invariant at x as

follows:

γx (X, B;Λ•)= inf
{

lctx

(
X, B; Dn

n

)
; n≥ 1, Dn ∈Λn

}
.

It is very interesting to study the variation in x of this functional (see Question 3.8),

but we can only say little in general. We compute this invariant if X is a curve,

recall some known results, and express it in terms of width. We can say more in the

toric case. In Section 4, we compute the local α-invariant in the generic point of the

invariant primes of a toric variety, and show that their minimum is exactly the global

α-invariant (Theorem 4.4). In particular, we can compute combinatorially the α-invariant

of a line bundle on a toric variety. With some extra assumptions, this was independently

obtained in [10, Theorem 3.4], with analytic methods.

The main result of Section 4 is Theorem 5.6, a logarithmic effective version of

a diophantine approximation result of Hensley [14, Lemma 2]. The special case q = 1

was solved by Averkov [6, Theorem 1.1], and our proof is inspired from his. We also give

sharp versions of the original results of Hensley [14].

In Section 6, we give the sharp lower bound for the α-invariant of a toric log Fano

(Theorem 6.1), a result essentially equivalent to Theorem 5.6. In particular, we obtain an

upper bound for the anti-log canonical volume (Corollary 6.2). Theorem 6.4 extends to

the log category and simplifies the proof of the finiteness of d-dimensional ε-log canon-

ical toric Fano varieties [8]. We end Section 6 with the simplest examples of toric log

Fano varieties, where we can explicitly compute both the minimal log discrepancy and

the α-invariant, and see their relation with diophantine approximation.

2 Families of Log Varieties

Throughout this paper, we fix a base field k, of characteristic zero. By scheme we mean

a k-scheme of finite type.

4420 F. Ambro
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2.1 Relative effective Cartier divisors

Let π : X → S be a flat morphism of schemes, and D an effective Cartier divisor on X.

Recall that D is called relative over S if one of the following equivalent conditions

holds:

(a) D is flat over S.

(b) for every point x ∈ X and a local equation f for D at x, f does not divide zero

in OXπ(x),x.

(c) for every s ∈ S, SuppD contains no associated prime of Xs.

If the fibers of π are reduced, (c) means that SuppD contains no irreducible component

of a fiber of π . If S′ → S is a morphism of schemes, the pullback of D is a well defined

effective Cartier divisor on X ×S S′, relative over S′.

Let π : X → S be a flat morphism of schemes. An effective Q-Cartier divisor on

X relative over S is a formal product xD, where x ≥ 0 is a rational number and D is an

effective Cartier divisor on X relative over S. If rx ∈ Z, we can write it as 1
r D′, where

D′ = rxD is an effective Cartier divisor on X relative over S.

We will use the following special case of [13, Proposition 3.5].

Lemma 2.1. Let f : X → S be a flat morphism of schemes, whose fibers satisfy Serre’s

property (S2). Let w : U ⊆ X be an open subset such that its complement Z satisfies

codim(Zs, Xs)≥ 2 for every s ∈ S. Let L be an invertible OX-module. Then Hi
Z (L)= 0

(i = 0,1), that is L ∼→w∗(L|U ). �

2.2 Log varieties, log canonical thresholds

Let (X/k, B) be a log variety. Log discrepancies in geometric valuations of X, and mini-

mal log discrepancies in scheme points, or closed subsets of X, are well defined by the

existence of log resolutions (see e.g., [3, 5]). Denote by (X, B)lc the largest open locus in X

where (X, B) has log canonical singularities, and (X, B)−∞ its complement. For an effec-

tive Q-divisor D on X and a scheme point x ∈ (X, B)lc, the log canonical threshold at x of

D with respect to (X, B) is defined as

lctx (X, B; D)= sup {t ≥ 0; mldx (X, B + tD)≥ 0} .

It is +∞ if x /∈ SuppD, 0 if x ∈ SuppD and mldx(X, B)= 0, and a positive real number if

x ∈ SuppD and mldx(X, B) > 0. It is rational if so are B, D near x. The reciprocal

μx (X, B; D)= 1/lctx (X, B; D)

4421Variation of Log Canonical Thresholds in Linear Systems
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is called the Arnold multiplicity at x of D with respect to (X, B). It is 0 if x /∈ SuppD,

+∞ if x ∈ SuppD and mldx(X, B)= 0, and a positive real number if x ∈ SuppD and

mldx(X, B) > 0.

2.3 Families of log varieties

A family of log varieties (X/S, B) consists of the following data:

(a) a flat morphism of schemes π : X → S, such that Xs is normal for every

s ∈ S;

(b) an effective Q-Cartier divisor B defined on U = Uπ and relative over S, where

w : U ⊆ X is the open locus where the morphism π is smooth,

satisfying the following property: there exists an integer r ≥ 1 such that rB is Cartier

and the OX-module w∗((Ω
top
U/S)

⊗r(rB)) is locally free. The smallest r with this property is

called the index of the family.

Here Ωtop
U/S is the top exterior product of Ω1

U/S, corresponding to the locally con-

stant dimension of the fibers. Property (a) implies that Z = X \ U is the union of the

singular locus of Xs, after all s ∈ S. In particular, codim(Zs, Xs)≥ 2 for every s ∈ S. Recall

that normality of a scheme is defined locally, so it does not imply irreducibility. The

fibers of π are normal if and only if the geometric fibers Xk(s) (s ∈ S) are normal, where

k(s) is an algebraic closure of k(s).

Consider a family of log varieties of index r. For l ∈ rZ, l B is a Cartier divisor on

U , and we can define

ω[l] =w∗

((
Ω

top
U/S

)⊗l
⊗ OU (l B)

)
.

The OX-module ω[l] is coherent (EGA IV, Proposition 5.11.1). By assumption, ω[r] is an

invertible OX-module.

Lemma 2.2. (ω[r])⊗
l
r

∼→ω[l] for every l ∈ rZ. �

Proof. We have natural multiplication maps ω[l] ⊗ ω[l ′] →ω[l+l ′]. By Lemma 2.1, ω[0] =OX.

Therefore suffices to show that ω[r] ⊗ ω[l] →ω[r+l] is an isomorphism. Indeed, denote

F =ω[r] ⊗ ω[l]. Our homomorphism factors as

F →w∗ (F |U ) ∼→ω[r+l].

We have Hi
Z (F)= 0 (i = 0,1), since ω[l] satisfies this property by Lemma 2.1, and ω[r] is

locally trivial. Therefore the first map is also an isomorphism. �
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Lemma 2.3. Let (X/S, B) be a family of log varieties of index r. Let g : S′ → S be a mor-

phism of schemes. Consider the induced base change diagram

X

π

��

X′

π ′

��

G
��

S S′
g

��

Then Uπ ′ = G−1(Uπ ), (X′/S′, (G|Uπ ′ )
∗B) is a family of log varieties over S′, and we have

natural isomorphisms

G∗ (ω[l]) ∼→ω′[l] (l ∈ rZ) . �

Proof. We have G∗(Ω1
X/S)

∼→Ω1
X′/S′ . Therefore, Uπ ′ = G−1(Uπ ) and we have a base change

diagram

U

w

��

U ′

w′

��

G|U
��

X X′
G

��

For l ∈ rZ, we obtain a natural homomorphism

G∗(ω[l])= G∗w∗((Ω
top
U/S)

⊗l(l B))→w′
∗((G|U )∗(Ωtop

U/S)
⊗l(l B)))

∼→w′
∗(Ω

top
U ′/S′)

⊗l(l B ′)))=ω′[l].

If we denote this homomorphism by F ′ → G ′, it factors as F ′ →w′
∗(F ′|U ′)

∼→G ′. Since ω[l] is

locally trivial, so is F ′. By Lemma 2.1, Hi
Z ′(F ′)= 0 (i = 0,1). Therefore, F ′ →w′

∗(F ′|U ′) is

also an isomorphism. �

In particular, for every s ∈ S, the fiber Xs is a normal variety defined over k(s),

rBs is an effective Cartier divisor on Us = Xs \ Sing(Xs), and if r B̄s is the effective Weil

divisor which is the closure of rBs in Xs, we have a base change diagram

Us

ws

��

� � �� U

w

��

Xs
� � �� X
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and an isomorphism

ω[r]|Xs

∼→ws∗

((
Ω

top
Us/k

)⊗r
(rBs)

)
=OXs

(
rKXs + r B̄s

)
.

Therefore rKXs + r B̄s is Cartier, so that (Xs, B̄s) is a log variety. We think of (Xs, B̄s) (s ∈ S)

as an algebraic family of log varieties parametrized by S. The boundary coefficients may

vary. To simplify notation, we denote B̄s by Bs.

Examples 2.4.

(1) Let π : X → S be a smooth morphism of schemes. Then (X/S, B) is a family

of log varieties over S if and only if B = 1
r D, for some integer r ≥ 1 and an

effective Cartier divisor D on X which is relative over S. The fibers are the

log varieties (Xs/k(s), 1
r D|Xs) (s ∈ S).

(2) Let (F/k, BF ) be a log variety. Let S be a scheme. Denote by BF × S the

Q-Cartier divisor p∗
1(BF 0), defined on F 0 × S, where F 0 is the smooth locus

of F . Then (F × S/S, BF × S) is the trivial family of log varieties over S, with

constant fiber (F, BF ).

(3) Let (X/S, B) be a family of log varieties. Let D be an effective Cartier divisor

on X, relative over S. Then (X/S, B + tD) is a family of log divisors for every

rational t ≥ 0.

(4) A family of log curves consists of a smooth morphism π : X → S of relative

dimension one, endowed with an effective Q-Cartier divisor B, relative over

S. If r is the index of the family, then rB = D is an effective Cartier divisor on

X which is finite flat over S. �

Lemma 2.5. Let π : X → S be a flat morphism of schemes with normal fibers, and S

smooth over k. Then (X/S, B) is a family of log varieties if and only if (X/k, B) is a log

variety and the boundary supports no irreducible components of fibers of π . Moreover,

they have the same index r, and π∗ω⊗r
S/k ⊗ ω[r]

(X/S,B) �ω[r]
(X/k,B). �

Proof. Since S and the fibers are normal, so is X. Let U = Uπ be the smooth locus of π .

It follows that codim(X \ U, X)≥ 2. In particular, l B is Cartier on U if and only if l B̄ is a

Weil divisor on X. We have a short exact sequence

0 → π∗Ω1
S/k →Ω1

U/k →Ω1
U/S → 0.

4424 F. Ambro
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It induces an isomorphism π∗Ωtop
S/k ⊗Ω

top
U/S �Ω

top
U/k. If l B is Cartier on U , we obtain an

isomorphism

π∗ω⊗l
S/k ⊗ ω[l]

(X/S,B) �ω[l]
(X/k,B).

Therefore, ω[l]
(X/S,B) is locally free if and only if ω[l]

(X/k,B) is locally free, and the first claim

follows. The second follows from the first. �

Lemma 2.6. Let (X, B) be a log variety. Let f : X → S be a morphism, with S a reduced

scheme. Then there exists an open subset ∅ �= V ⊆ S such that (X, B)| f−1V → V is a family

of log varieties. �

Proof. We may shrink S to an open subset, so that S is smooth, and f is flat with normal

fibers. Let U ⊆ X be the smooth locus of f . Let r ≥ 1 such that rKX + rB is Cartier. We

may further shrink S so that the effective Cartier divisor rB|U becomes flat over S. By

Lemma 2.5, (X/S, B|U ) is a family of log varieties. �

Lemma 2.7. Let π : (X, B)→ S be a family of log varieties. Let S be regular at s, and

choose a regular system of parameters (hi)i for OS,s. The following are equivalent for

x ∈ Xs:

(a) the fiber (Xs, Bs) has log canonical singularities near x;

(b) the log variety (X, B + π∗Σs) has log canonical singularities near x, where

Σs =∑
i div(hi). �

Proof. Let S′ = div(hj). It is defined locally near s, but we may shrink S to a neighbor-

hood of s. Let X′ = π∗(S′), π ′ : X′ → S′ the induced morphism, and B ′ = B|Uπ ′ . The base

change data (X′, B ′)→ S′ � s, (hi|S′)i �= j satisfy the same properties. Now (X, B + X′) is a

log variety with lc center X′, a normal Cartier divisor in X. Therefore, the different is

zero, and the codimension one adjunction formula is(
KX + B + X′) |X′ = KX′ + B ′.

If we denoteΣ ′
s =∑

i �= j div(hi), we obtain (KX + B + π∗Σs)|X′ = KX′ + B ′ + π ′∗Σ ′
s. By Inver-

sion of Adjunction [15], (X, B + π∗Σs) has log canonical singularities near x if and only

if (X′, B ′ + π ′∗Σ ′
s) has log canonical singularities near x. Iterating this argument proves

the equivalence. �

Theorem 2.8. Let π : (X, B)→ S be a family of log varieties. Then the set of points x ∈ X

such that (Xπ(x), Bπ(x)) has log canonical singularities at x, is open in X. �

4425Variation of Log Canonical Thresholds in Linear Systems
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Proof. We have to show that the complement Z(π)= ∪s∈S(Xs, Bs)−∞ is closed in X. For

this, it suffices to construct a non-empty open subset V ⊆ S such that the restriction

Z(π)|π−1(V) is closed. Indeed, replacing S by S′ = S \ V and π by the induced base change

family, we have

Z (π)= (
Z (π) |π−1 (V)

) ∪ Z
(
π |S′) .

By Noetherian induction, Z(π |S′) is closed. Therefore Z(π) is closed.

It remains to prove the claim. For this, we may base change with the reduced

structure on S and then restrict to the regular locus. Therefore, S is regular. By

Lemma 2.5, (X, B) is a log variety. We show that we have an inclusion (X, B)−∞ ⊆ Z(π),

which is an equality over some non-empty open subset of S.

For the inclusion, let x ∈ X \ Z(π), so that (Xπ(x), Bπ(x)) has log canonical singu-

larities at x. By Lemma 2.7, (X, B + π∗Σs) has log canonical singularities at x. Therefore,

(X, B) has log canonical singularities at x, that is x /∈ (X, B)−∞.

By Hironaka, there exists a desingularization μ : X′ → X and a normal crossing

divisor
∑

i Ei which supports B ′ =μ∗(KX + B)− KX′ . After shrinking S to an open sub-

set, the morphism (X′,
∑

i Ei)→ S becomes log smooth: X′ → S is smooth and
∑

i Ei is a

relative normal crossings divisor. In this case, we show that the inclusion is an equality.

Assuming (X, B) has log canonical singularities at x, we have to show that (Xs, Bs) has

log canonical singularities at x, where s = π(x). We may shrink X to a neighborhood of

x, and suppose (X, B) has log canonical singularities. That is the coefficients of B ′ are

at most 1. By an iteration of adjunction using a local system of parameters at s (see

Lemma 2.7 and its proof), we obtain

μ∗
s

(
KXs + Bs

)= KX′
s
+ B ′

s,

where B ′
s =∑

i bi Ei|X′
s
. Since (X′,

∑
i Ei)→ S is log smooth, a prime divisor on X′

s is con-

tained in at most one Ei. Therefore, the coefficients of B ′
s are some of the bi’s, so at most

1. Therefore, (Xs, Bs) has log canonical singularities at x. �

Proposition 2.9. Let π : (X, B)→ S be a family of log varieties whose fibers have at most

log canonical singularities. Let D be an effective Cartier divisor on X, relative over S.

Then the function X � x �→ lctx(Xπ(x), Bπ(x); Dπ(x)) is lower semi-continuous and takes only

finitely many values. �

Proof. Fix t ≥ 0. Then lctx(Xπ(x), Bπ(x); Dπ(x))≥ t if and only if (Xπ(x), Bπ(x) + tDπ(x)) has

log canonical singularities at x. Since (X, B + tD|U )→ S is a family of log varieties, the

locus of such x is open by Theorem 2.8. Therefore the function is lower semi-continuous.
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To show that the function takes only finitely many values, it suffices to prove

this holds over some open non-empty subset of S (by Noetherian induction). Then we

may assume S is reduced and regular. Let X′ → X be a desingularization, endowed with a

normal crossing divisor
∑

i Ei which supports both B ′ =μ∗(KX + B)− KX′ and D′ =μ∗D.

We finally shrink S to an open subset such that (X′,
∑

i Ei)→ S becomes log smooth. We

have

μ∗
s

(
KXs + Bs + tDs

)= KX′
s
+ B ′

s + tD′
s,

and the coefficients of B ′
s + tD′

s are some of the b′
i + td′

i . Therefore each lctx(Xs, Bs; Ds)

is either +∞, or the largest t ≥ 0 such that b′
i + td′

i ≤ 1 for certain i. They belong to a

finite set. �

Corollary 2.10. Let π : (X, B)→ S be a family of log varieties. Let Z ⊆ X be a closed

subset, such that Z → S is proper surjective, and (Xs, Bs) has log canonical singularities

near Zs for every s ∈ S. Let D be an effective Cartier divisor on X, relative over S. Then the

function S � s �→ lctZs(Xs, Bs; Ds) is lower semi-continuous and takes only finitely many

values. �

Proof. By Theorem 2.8, we may shrink X near Z , so that the fibers of π have

log canonical singularities. Denote γ (x)= lctx(Xπ(x), Bπ(x); Dπ(x)). Then lctZs(Xs, Bs; Ds)=
minx∈Zs γ (x), and

{
s ∈ S; lctZs (Xs, Bs; Ds) < t

}= π (Z ∩ {x ∈ X; γ (x) < t}) .

So it follows from Proposition 2.9. �

3 Lct-Variation in a Linear System

Let (X/k, B) be a log variety. We assume k is algebraically closed. Let Λ be a non-empty,

finite dimensional linear system on X. That is L is an invertible OX-module, V ⊆ Γ (X,L)
is a non-zero finite dimensional k-vector subspace, and Λ is the family of divisors of

zeros of sections in V . Using a basis of V , we may identify Λ with Pn
k, where n is the

dimension of Λ. Inside X ×Λ we have the universal divisor H , given by
∑n

i=0 si(x)λi = 0,

where s0, . . . , sn is basis of V over k.

Proposition 3.1. The function (X, B)lc ×Λ→ [0,∞], (P , D) �→ lctP (X, B; D) is lower semi-

continuous and takes only finitely many values. �
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Proof. Denote X = X × X ×Λ, S = X ×Λ, and π = p23 : X → S the projection on the last

two factors. Let σ be the section of π which is the diagonal on X and the identity on

Λ. Let B = p∗
1 B and H= p∗

13 H . Then π : (X ,B)→ S is a family of log varieties, σ is a

section of π , and H is an effective Cartier divisor relative over S. For s = (P , D) ∈ S, the

fiber (Xs,Bs + tHs) is isomorphic to (X, B + tD) and σ(s) ∈Xs corresponds to P ∈ X. If

we restrict the family to (X, B)lc ×Λ, it becomes log canonical, and lctσ(s)(Xs,Bs;Hs)=
lctP (X, B; D). We conclude by Proposition 2.9. �

Example 3.2. lctP (X, B; D) <+∞ if and only if (P , D) ∈ H . �

Example 3.3. Endow the affine line A1
k with a boundary B =∑

P bP P , where bP ∈ [0,1],

and only finitely many are non-zero. Let f0, . . . , fn ∈ k[t] be polynomials, linearly inde-

pendent over k. They induce a linear system Λ=
{

Dλ = div
(∑

i λi fi
); λ ∈ Pn

}
. Denote by ∂

the canonical derivation of k[t]. Then lctP (A1, B; Dλ) < t if and only if
∑

i
∂m fi(P )

m! λi = 0 for

every integer 1 ≤ m ≤ 1−bP
t . �

Theorem 3.4. Let x ∈ (X, B)lc be a scheme point. The function lctx(X, B; ·) : Λ→ [0,+∞]

is lower semi-continuous and takes only finitely many values. �

Proof. We have lctx(X, B; D)= maxP∈x̄ lctP (X, B; D). By Proposition 3.1, it takes only

finitely many values. For t> 0, we have

{D ∈Λ; lctx (X, B; D) < t} = ∩P∈x̄ {D ∈Λ; lctP (X, B; D) < t} .

Each term on the right-hand side is closed, by Proposition 3.1. Therefore the left-hand

side is also closed. �

In particular, lctx(X, B; ·) attains its maximum (respectively, minimum) on a

dense open (respectively, special closed) subset of Λ. Define

γx (X, B;Λ)= min
D∈Λ

lctx (X, B; D) .

Denote μx(X, B;Λ)= 1/γx(X, B;Λ), so that μx(X, B;Λ)= maxD∈Λ μx(X, B; D).

Theorem 3.5. The function (X, B)lc → [0,+∞], P �→ γP (X, B;Λ) is lower semi-continuous

and takes only finitely many values. �

Proof. By Proposition 3.1, the values belong to a finite set. And {P ∈
(X, B)lc; γP (X, B;Λ)< t} is the projection on the first factor of {(P , D) ∈ (X, B)lc ×
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Λ; γP (X, B; D) < t}. The latter is closed by Proposition 3.1, and since Λ is proper over k,

it follows that our level set is closed. �

Theorem 3.6. Let Z ⊆ X be a closed subset such that Z/k is proper and (X, B) has log

canonical singularities near Z . The function Λ→ [0,∞], D �→ lctZ (X, B; D) is lower semi-

continuous and takes only finitely many values. �

Proof. Denote X = X ×k Λ, S =Λ, and π : X → S the second projection. Let B = p∗
1 B and

H⊂ X ×Λ the universal divisor. Then π : (X ,B)→ S is a family of log varieties, H is

an effective Cartier divisor relative over S, Z = Z × S is a closed subset of X which is

proper over S. For s = [D] ∈ S, the fiber (Xs,Bs + tHs) is isomorphic to (X, B + tD) and

lctZs(Xs,Bs;Hs)= lctZ (X, B; D). We conclude by Corollary 2.10. �

In particular, lctZ (X, B; ·) attains the maximal (respectively, minimal) value on a

dense open (respectively, special closed) subset of Λ. Define

γZ (X, B;Λ)= min
D∈Λ

lctZ (X, B; D) .

If X/k is proper, denote γX(X, B;Λ) by γ (X, B;Λ). Define similarly μZ (X, B;Λ) and

μ(X, B;Λ).

Theorem 3.7. Let (Xi/k, Bi) be finitely many proper log varieties, with log canoni-

cal singularities. Let |Li| be non-empty complete linear systems on Xi. Let X =∏
i Xi,

B =∑
i p∗

i (Bi), L =∑
i p∗

i (Li). Then the product log variety (X, B) has log canonical

singularities, the complete linear system |L| is non-empty, and γ (X, B; |L|)= mini

γ (Xi, Bi; |Li|). �

Proof. By induction, suffices to consider only two factors.

Let Di ∈ |Li|, for i = 1,2. Let ti ≥ 0 be maximal such that (Xi, Bi + ti Di) has

log canonical singularities. Set t = min(t1, t2) and D = p∗
1 D1 + p∗

2 D2. Then D ∈ |L|
and t is maximal such that (X, B + tD) has log canonical singularities. There-

fore, γ ≤ lct(X, B; D)= t. Taking minimum after all members, we obtain γ (X, B; |L|)≤
mini γ (Xi, Bi; |Li|).

Suppose by contradiction that γ (X, B; |L|) <mini γ (Xi, Bi; |Li|). That is, there

exists D ∈ |L| and t ≤ mini γ (Xi, Bi; |Li|) such that (X, B + tD) does not have log canoni-

cal singularities. Denote Z = (X, B + tD)−∞. It is a proper subset of X. If we show that

Z = π−1
i πi(Z) for every i, it follows that Z = ∅, a contradiction.
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We prove the claim for the second projection π : X → X2. Choose a closed point

P ∈ X2 and suppose XP � Z . We will show that XP ∩ Z = ∅. Indeed, by Hironaka’s flatten-

ing, there exists a desingularization g : X′
2 → X2 such that the induced Cartier divisor

D′ on X′ = X1 × X′
2 admits a decomposition D′ = D′′ + π∗(D2), where D′′ is an effective

Cartier divisor on X′ relative over X′
2, and D2 is an effective Cartier divisor on X′

2 with

normal crossing support.

Choose a point Q ∈ g−1(P ). Since D′′|X′
Q

∈ |L1| and t ≤ γ (X1, B1; |L1|), the log vari-

ety (X1, B1 + tD′′|X1×Q) has log canonical singularities. This is the fiber at Q of the family

of log varieties (X′/X′
2, p∗

1(B1)+ tD′′), so by Lemma 2.7, the log variety (X′, p∗
1(B1)+ tD′′ +

π ′∗ΣQ) has log canonical singularities near X′
Q, where ΣQ is any local divisor cut out by

a regular system of parameters of OX′
2,Q.

On the other hand, (X, B + tD) has log canonical singularities at the generic

point of XP . Therefore (X′, B ′ + tD′) has log canonical singularities at the generic point

of X′
Q. Let g∗(KX2 + B2)= KX′

2
+ B ′

2. It follows that (X′
2, B ′

2 + tD2) has log canonical singu-

larities. Therefore, B ′
2 + tD′

2 ≤ΣQ for some choice of local parameters at Q. We deduce

that (X′, p∗
1(B1)+ tD′′ + π ′∗(B ′

2 + tD′
2)) has log canonical singularities near X′

Q. That is

(X′, B ′ + tD′) has log canonical singularities near X′
Q. This holds for every Q ∈ g−1(P ), so

we deduce that (X′, B ′ + tD′) has log canonical singularities over an open neighborhood

of g−1(P ). Since (X′, B ′ + tD′)→ (X, B + tD) is log crepant, it follows that (X, B + tD) has

log canonical singularities near XP , that is Z ∩ XP = ∅.
�

3.1 Graded case

Let L be a Q-Cartier divisor on X such that |nL| �= ∅ for some n≥ 1. Let x ∈ (X, B)lc be a

scheme point. The α-invariant at x of L with respect to (X, B) is defined as

γx (X, B; L)= inf
{

lctx

(
X, B; Dn

n

)
; n≥ 1, Dn ∈ |nL|

}
.

Question 3.8. Is (X, B)lc � x �→ γx(X, B; L) is lower semi-continuous, with finitely many

rational values? �

Let m ≥ 1 such that mL is Cartier and |mL| �= ∅. Then γx(X, B; L)=
infm|n nγx(X, B; |nL|).
Lemma 3.9. If dim X = 1, deg L > 0 and x ∈ X is a closed point, then γx(X, B; L)=
1−bx
deg L . �

Proof. We may suppose bx < 1. Let mL be Cartier and |mL| �= ∅. Let g be the genus

of C . Recall that any complete linear system of degree g is non-empty. Let m | n and
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ndeg L > g. Then |nL − (ndeg L − g)x| �= ∅. Therefore

n
deg L

1 − bx
− g

1 − bx
≤μx (X, B; |nL|)≤ n

deg L

1 − bx
.

Dividing by n and letting n→ ∞, we obtain the claim. �

Proposition 3.10 ([16, Theorem 6.7.1]). Suppose Xd is proper and L is a nef and big

Q-divisor. Then γP (X, B; L) · d
√
(Ld)≤ d for every P ∈ (X, B)lc. �

Proof. We may scale L and suppose it is Cartier. Let 0< c< d
√
(Ld) be a rational number.

Since h0(nL)= (Ld)nd

d! + O(nd−1) and
(nc+d

d

)= cd nd

d! + O(nd−1), there exists an integer n≥ 1

such that nc ∈ Z and h0(nL) >
(nc+d

d

)
.

Let Q ∈ X \ (SingX ∪ SuppB). The evaluation map Γ (X,nL)→OQ/m
nc+1
Q has non-

trivial kernel, by dimension count. Therefore there exists D ∈ |nL| such that multQ(D) >

nc. Let (X, B + γ D) be maximally log canonical at Q. Let v be the valuation induced by the

exceptional divisor of the blow-up of Q ∈ X. Then 0 ≤ a(v; X, B + γ D)= d− γmultv(D) <

d− γnc. Therefore γ < d
nc . We conclude γQ(X, B; |nL|) < d

nc .

Since the points Q are dense in X, Theorem 3.5 gives γP (X, B; |nL|) < d
nc for

every P ∈ (X, B)lc. Then γP (X, B; L)≤ nγP (X, B; |nL|) < d
c for every P ∈ (X, B)lc. Letting c

converge to d
√
(Ld), we obtain the claim. �

If X/k is proper and (X, B) has log canonical singularities, define the α-invariant

of L with respect to (X, B) as

γ (X, B; L)= inf
{

lct
(

X, B; Dn

n

)
; n≥ 1, Dn ∈ |nL|

}
.

Question 3.11. Does mld(X, B) > 0 imply γ (X, B; L) > 0? �

For example, γ (X, B; L)= mld(X,B)
deg L if X is a curve and L �∼Q 0 (by Lemma 3.9). If X

is smooth, B = 0, and A is a very ample divisor on X, the argument of [20, Corollary 5.11]

shows that γ (X,0; L)≥ 1
(L·Ad−1)

. Theorem 3.7 gives the following corollary.

Corollary 3.12. Let (Xi/k, Bi) be finitely many proper log varieties, with log canonical

singularities. Let Li be Q-Cartier divisors such that |mLi| �= ∅ for some m ≥ 1. Let X =∏
i Xi, B =∑

i p∗
i (Bi), L =∑

i p∗
i (Li). Then the product log variety (X, B) has log canonical

singularities and

γ (X, B; L)= min
i
γ (Xi, Bi; Li) . �
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3.2 The α-invariant in terms of width

Let X be a normal variety. Let Λ be a non-empty, finite dimensional linear system on X.

For a prime divisor E ⊂ X, define the width of Λ at E as

wE (Λ)= sup {multE (D) ; D ∈Λ} .

It is a non-negative integer, zero if and only if E is not a fixed component of Λ and

φΛ(E)= φΛ(X). If f : X′ → X is a proper modification and E ⊂ X′ is a prime divisor, define

the width of Λ at E as wE ( f∗Λ). It depends only on the valuation of X defined by E

(called geometric valuation of X).

Let L be a Q-Cartier divisor such that mL is Cartier and |mL| �= ∅ for some m ≥ 1.

Let E be a geometric valuation of X. Define the width of L at E as

wE (L)= sup
{
wE (|nL|)

n
; m | n

}
.

If X is proper, wE (L)= 0 for every geometric valuation E of X if and only if L ∼Q 0. If X

is projective of dimension d, A is a very ample divisor on X, and E is a prime divisor

on X, then wE (L)≤ (L · Ad−1). It follows that if X is proper, then wE (L) is a non-negative

real number, for every geometric valuation E of X. By definition, the following formulas

hold:

– Let (X, B) be a log variety, Λ a non-empty finite dimensional linear system on

X. Let E be a geometric valuation of (X, B)lc. Then

γE (X, B;Λ)=

⎧⎪⎪⎨⎪⎪⎩
+∞, wE (Λ)= 0

a(E; X, B)
wE (Λ)

, wE (Λ) > 0

– Let (X, B) be a proper log variety, with log canonical singularities. Let L be a

Q-Cartier divisor such that mL is Cartier and |mL| �= ∅ for some m ≥ 1. Then γ (X, B; L)

is the infimum of γE (X, B; L) after all geometric valuations E of X. Equivalently,

γ (X, B; L)=

⎧⎪⎪⎨⎪⎪⎩
+∞, L ∼Q 0

infwE (L)>0
a(E; X, B)
wE (L)

, L �∼Q 0

4 The α-Invariant on Toric Varieties

Let (X/k, B) be a toric log variety with log canonical singularities. That is X/k is a toric

variety, B is an effective Q-divisor which is torus invariant, KX + B is Q-Cartier and
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(X, B) has at most log canonical singularities. Due to the existence of log resolutions in

the toric category, the latter condition is equivalent to B =∑
i bi Ei, where Ei are the torus

invariant prime divisors of X and bi ∈ [0,1] ∩ Q. We have a(Ei; X, B)= 1 − bi. Throughout

this section, we also assume that X/k is proper.

Let L =∑
i li Ei be a torus invariant Q-Cartier divisor. Recall that Γ (X, L)=

⊕m∈M∩�L k · χm, where �L = ∩i{m ∈ MR; 〈m, ei〉 + li ≥ 0} and {ei} =ΔX(1).

Let V ⊆ Γ (X, L) be a non-zero, torus invariant k-vector subspace. There exists a

finite set A⊆ M ∩ �L such that V = ⊕m∈Ak · χm. Let Λ= {( f)+ L; f ∈ V \ 0} be the corre-

sponding linear system.

Lemma 4.1. wEi (Λ) is attained by a torus invariant member, computed by the formula:

wEi (Λ)= max
m∈A

〈m, ei〉 + li. �

Proof. Let t ≥ 0. The set { f ∈ V; multEi (( f)+ L)≥ t} is a torus invariant vector subspace

of V . So it is non-zero if and only if it contains χm for some m ∈ A. It follows that the

maximal (also minimal) value among multEi (D) (D ∈Λ) is attained within the subset

multEi ((χ
m)+ L)= 〈m, ei〉 + li (m ∈ A). �

We have wEi (Λ)= 0 if and only if A is contained in the hyperplane 〈·, ei〉 + li = 0. It

follows that we can compute γx(X, B;Λ) for every torus invariant codimension one point

x ∈ X. Indeed, x is the generic point of some Ei, and γEi (X, B;Λ) is +∞ if wEi (Λ)= 0,

and 1−bi
maxm∈A〈m,ei〉+li

otherwise. Proposition 4.2 states that only these valuations determine

γ (X, B;Λ).

Proposition 4.2. γ (X, B;Λ)= mini γEi (X, B;Λ). In particular, γ (X, B;Λ) is attained by a

torus invariant member of Λ. �

Proof. The inequality ≤ is clear. For the converse, let t ≤ mini γEi (X, B;Λ) and D ∈Λ.

We have to show that (X, B + tD) has log canonical singularities.

Let μ : X′ → X be a toric birational modification which is an isomorphism in codi-

mension one, and such that X′ is Q-factorial. The toric varieties X, X′ have the same

invariant prime divisors, and therefore we may pullback our data to X′. Therefore we

may suppose X is Q-factorial.

The conclusion is local on X, so we may shrink X to a torus invariant affine

open neighborhood U of a fixed point. Thus U = TNemb(σ ), where σ is a simplicial

cone in NR which generates NR. Let N ′ be the lattice generated by the primitive vec-

tors ei ∈ N which generate the extremal rays of σ . The inclusion N ′ ⊆ N induces a
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toric morphism τ : U ′ → U which is finite, and étale in codimension one. We have

(U ′,U ′ \ T)� (
Ad

k,
∑d

j=1 Hj
)
, where Hi are the standard hyperplanes of the affine space.

We have τ ∗(KX + B + tD|U )= KAd
k
+∑d

j=1 bj Hj + tD′. We may suppose �τ ∗L� = 0, and

therefore (Ad
k,
∑d

j=1 bj Hj + tD′ =∑d
j=1 bj Hj + t{D′} + t�D′�) has log canonical singulari-

ties by Lemma 4.3. Therefore (X, B + tD) has log canonical singularities on U . �

Lemma 4.3. Let Hi be the standard hyperplanes of the affine space Ad
k. Let bi ∈ [0,1],

t> 0, and 0 �= P ∈ k[z1, . . . , zd] such that degzi
(P )≤ 1−bi

t for every 1 ≤ i ≤ d. Let D be the

divisor of zeros of P . Then (Ad
k,
∑d

i=1 bi Hi + tD) has log canonical singularities. �

Proof. Denote wi = degzi
(P ). Consider the product of log varieties

∏d
i=1(P

1,bi · 0). We

have γ (P1,bi · 0; |O(wi)|)= 1−bi
wi

≥ t. By Theorem 3.7, γ (
∏d

i=1(P
1,bi · 0); |O(w1, . . . , wd)|)≥ t.

Now P defines a divisor D′ ∈ |O(w1, . . . , wd)|. Therefore (
∏

i P1,�ibi · 0 + tD′) has

log canonical singularities. After restricting to the complement of �i∞, we obtain that

(Ad
k,
∑d

i=1 bi Hi + tD) has log canonical singularities. �

Suppose now that |nL| �= ∅ for some n≥ 1, that is �L �= ∅. The width of L at Ei is

computed by the formula

wEi (L)= max
m∈�L

〈m, ei〉 + li.

Let r ≥ 1 be the smallest integer such that the extremal points of r�L belong to the lattice

M (i.e., Γ (rL)⊗ Γ (nL)→ Γ ((r + n)L) is surjective for n� 0). Then wEi (L)= wEi (|rL|)
r .

The width of L at Ei is zero if and only if �L is contained in the hyperplane

〈·, ei〉 + li = 0. In this case, γEi (X, B; L)= +∞. If wEi (L) > 0, then

γEi (X, B; L)= 1 − bi

wEi (L)
.

Proposition 4.2 for the complete linear systems |nL| gives the following theorem.

Theorem 4.4. γ (X, B; L)= mini γEi (X, B; L). In particular, γ (X, B; L) is attained by some

invariant member (χm)+ L (m ∈ MQ ∩ �L). �

Recall that the stable fixed multiplicity of L in Ei is defined as

fEi (L)= inf
{

multEi (Dn)

n
; n≥ 1, Dn ∈ |nL|

}
.

In our toric setting, it has the following combinatorial formula:

fEi (L)= min
m∈�L

〈m, ei〉 + li.
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It is zero if and only if Ei is not fixed by |nL| for some n≥ 1. More precisely, r fEi (L)=
multEi Fix(|rL|), where r is defined above.

Recall that the width of a convex set � ⊂ MR along a direction e ∈ NR \ 0 is

defined as w(�; e)= sup{〈m′, e〉 − 〈m, e〉; m′,m ∈ �}. We obtain the identity:

w (�L; ei)=wEi (L)− fEi (L) .

Corollary 4.5. Let (X, B) be a proper toric log variety with log canonical singularities.

Let L be a torus invariant Q-Cartier divisor such that the linear system |nL| is mobile

for some n≥ 1. Then

γ (X, B; L)= sup
{
t ≥ 0; t (�L − �L)⊆ �−KX−B

}
. �

Proof. We have t(�L − �L)⊆ �−KX−B if and only if t(�L − m)⊆ �−KX−B for every m ∈ �L .

Since −KX − B =∑
i(1 − bi)Ei, this is equivalent to t〈m′ − m, ei〉 + 1 − bi ≥ 0 for every

invariant prime divisor Ei ⊂ X, and m,m′ ∈ �L . Equivalently, t · w(�L; ei)≤ 1 − bi for

every i. By assumption, fEi (L)= 0 for every i. That is w(�L; ei)=wEi (L). The condition

becomes t · wEi (L)≤ 1 − bi for every i, that is t ≤ γ (X, B; L), by Theorem 4.4. �

Lemma 4.6. Let (X, B) be a proper toric log variety, with log canonical singularities. Let

L be a torus invariant Q-Cartier divisor such that |nL| �= ∅ for some n≥ 1.

(a) X � P �→ γP (X, B; L) is lower semi-continuous, and takes only finitely many

values.

(b) Let P ∈ X \ T be a closed point outside the torus. Let O be the generic

point of the unique torus orbit which contains P . Then γP (X, B; L)=
γO(X, B; L). �

Proof. (a) Fix t> 0. Then {P ∈ X; γP (X, B; L) < t} = ∪n≥1 Z(t,n), where Z(t,n)=
∪Dn∈|nL|(X, B + t

nDn)−∞. Each Z(t,n) is torus invariant. And is closed by Theorem 2.8

applied to the universal divisor of |nL|. Since X contains only finitely many closed torus

invariant subsets, Z(t,n) belong to a finite set. Therefore, ∪nZ(t,n) is closed in X. We

conclude that P �→ γP (X, B; L) is lower semi-continuous. The function is constant on the

torus orbits, and since X has only finitely many orbits, we conclude that the function

takes only finitely many values.

(b) The inequality ≤ is clear. For the converse, let t ≤ γO(X, B; L). Then Z(t,n) is a

closed torus invariant subset of X which does not contain the generic point of the orbit

O. Therefore Z(t,n) is disjoint from O. Therefore t ≤ γP (X, B; L). �
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5 Hensley-Type Diophantine Approximation

The main result of this section is Theorem 5.6, the combinatorial statement behind

Theorem 6.1. This technically looking statement may be reformulated in terms of

approximating a point on the real torus by its multiples (see the examples of Section

5, especially Lemma 6.8). Theorem 5.6 provides an effective way to show that if the ori-

gin is the unique interior lattice point of a certain polytope, then it cannot be too close

to the boundary of the polytope. The interested reader should consult [6–9, 14, 17] for

more on this topic.

5.1 Geometry of numbers [12]

Let V � Rd be a finite dimensional R-vector space. Let V∗ be the dual vector space. The

dual of a non-empty convex set � ⊆ V is defined as

�∗ = {
v∗ ∈ V∗; 〈v∗, v〉 + 1 ≥ 0 ∀v ∈ �

}
.

It is closed, convex subset of V∗, containing the origin. The Duality Theorem states that

if � is compact convex and contains the origin in its interior, then (�∗)∗ = �.

Let � ⊂ V be a compact convex set. Let P ∈ � be a point. Denote

γ (P ∈ �)= sup {t ≥ 0; P + t (� − �)⊆ �} .

It is a well-defined non-negative real number, zero if and only if P does not belong to

the relative interior of �. We can think of γ (· ∈ �) as a distance function to the boundary

of �.

Suppose dim � = dim V and P is an interior point of �. For each v ∈ V \ 0, there

exist l+, l− > 0 such that P + l+v, P − l−v ∈ ∂�. The supremum of the ratio l+/ l−, after

directions v ∈ V \ 0, is called the coefficient of asymmetry of � about P , denoted c(P ∈
�). We have

γ (P ∈ �)= 1

1 + c (P ∈ �) .

By definition, c(P ∈ �)≥ 1. Therefore γ (P ∈ �)≤ 1
2 , and equality holds if and only if � is

symmetric about P .

If 0 is an interior point of a compact convex set �, then so is 0 ∈ �∗, and γ (0 ∈
�)= γ (0 ∈ �∗).

Suppose � is a compact polytope and P is an interior point. To compute

c(P ∈ �) it suffices to consider the directions v such that P + Rv contains some ver-

tex of �. In particular, the supremum in the definition of c(P ∈ �) is a maximum. And
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if both P and � are rational with respect to some lattice Λ with Λ⊗Z R = V , then

c(P ∈ �) ∈ Q. Fixing a line which attains the maximum and passes through a vertex of

�, we can apply Caratheodory’s Theorem to the other boundary point, and obtain the

following statement (called the simplex trick): there exists a simplex S (with dim S ≤
dim V ), with vertices among those of �, containing P in its relative interior, and with

c(P ∈ �)≤ c(P ∈ S).

If S is a simplex and P has barycentric coordinates (γi)i with respect to the

vertices of S, then γ (P ∈ S)= mini γi.

We will use an asymmetric version of Minkowski’s first theorem (cf. [12, Theorem

2, p. 52]).

Theorem 5.1. Let � ⊂ Rd be a compact convex set, containing the origin in the interior.

Then

|Zd ∩ int (�) | ≥ γ (0 ∈ �)d volZd (�) . �

Proof. Denote γ = γ (0 ∈ �). Let k≥ 0 be the largest integer such that volZd(γ�) > k. By

Van der Corput’s Theorem (see [12, Theorem 1, p. 47]) applied to (γ − ε)� (0< ε� 1),

there exist pairwise distinct elements v1, . . . , vk+1 in the interior of γ�, such that

vi − v j ∈ Zd for all i, j. Since γ� − γ� ⊆ �, it follows that (vi − v1)
k+1
i=1 are k + 1 vectors in

Zd ∩ int(�). Therefore, |Zd ∩ int(�)| ≥ k + 1. This proves that |Zd ∩ int(�)| ≥ volZd(γ�)=
γ dvolZd(�). �

The original Minkowski’s first theorem asserts that if � is symmetric about the

origin, that is γ (0 ∈ �)= 1
2 , then {0} � Zd ∩ int(�) if volZd(�) > 2d.

5.2 Diophantine approximation

For positive integers p,q, define integers up,q recursively as follows: u1,q = q, up+1,q =
up,q(1 + up,q). The following properties hold:

• ∑p
i=1

1
1+ui,q

= 1
q − 1

up+1,q
,
∏p

i=1(1 + ui,q)= up+1,q

q .

• ∏p
i=1

1
1+ui,q

= 1 − q
∑p

i=1
1

1+ui,q
.

• q | up,q and gcd(1 + up,q,1 + up′,q)= 1 for p �= p′.

The sequence (1 + up,1)p≥1 = (2,3,7,43, . . .) is called the Sylvester sequence in the

literature, and tp,q = 1 + up,q was also considered in [17]. And up,q can be expressed as a

polynomial in q, with leading term q2p−1
.
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Lemma 5.2. [18] Let d be a positive integer. Let x1 ≥ · · · ≥ xd> 0 and y1 ≥ · · · ≥ yd> 0 be

real numbers such that
∏l

i=1 xi ≥∏l
i=1 yi for every 1 ≤ l ≤ d. Then

∑d
i=1 xi ≥∑d

i=1 yi, and

equality holds if and only if xi = yi for every i. �

Lemma 5.3 (cf. [18]). Let d,q be positive integers. Let x1 ≥ · · · ≥ xd> 0 be real numbers

such that
∏l

i=1 xi ≤ 1 − q
∑l

i=1 xi for every 1 ≤ l ≤ d. Then
∑d

i=1 xi ≤∑d
i=1

1
1+ui,q

, and equal-

ity holds if and only if xi = 1
1+ui,q

for every i. �

Proof. Denote yi = 1
1+ui,q

. We show by induction on d that
∑d

i=1 xi ≥∑d
i=1 yi implies yi = xi

for all i.

Let d= 1. Then x1 ≤ 1 − qx1 is equivalent to x1 ≤ y1.

Let d> 1. We have
∏d

i=1 xi ≤ 1 − q
∑d

i=1 xi ≤ 1 − q
∑d

i=1 yi =∏d
i=1 yi. Therefore, we

may define l to be maximal with the property
∏

i≥l xi ≤∏
i≥l yi. We distinguish two

cases:

Case l = d. Then xd ≤ yd. Then
∑d−1

i=1 xi ≥∑d−1
i=1 yi. By induction, yi = xi for i <d. It

follows that yd = xd too.

Case l <d. By the maximality of l, it follows that
∏k

i=l xi ≤∏k
i=l yi for every l ≤

k≤ d, and the inequality is strict for k<d. Lemma 5.2 gives
∑d

i=l xi <
∑d

i=l yi. But then∑l−1
i=1 xi <

∑l−1
i=1 yi. By induction, this is a contradiction. �

Lemma 5.4. For indeterminates T1, . . . , Td, the following formula holds:

det

⎛⎜⎜⎜⎜⎜⎝
1 + T1 1 1

1 1 + T2 1
...

. . .
...

1 · · · 1 1 + Td

⎞⎟⎟⎟⎟⎟⎠=
(

1 +
d∑

i=1

1

Ti

)
d∏

i=1

Ti.

�

Proof. We use induction on d. The case d= 1 is clear. Let d≥ 2. The determinant is of the

form c1T1 + c0, where c0, c1 are polynomials in T2, . . . , Td. The constant term is obtained

by setting T1 = 0, and we compute c0 =∏d
i=2 Ti. The other term is the difference

det

⎛⎜⎜⎜⎜⎜⎝
1 + T1 1 1

1 1 + T2 1
...

. . .
...

1 · · · 1 1 + Td

⎞⎟⎟⎟⎟⎟⎠− det

⎛⎜⎜⎜⎜⎜⎝
T1 1 1

1 1 + T2 1
...

. . .
...

1 · · · 1 1 + Td

⎞⎟⎟⎟⎟⎟⎠ .
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We compute the determinants using the formula by permutations σ of {1, . . . ,d}.
If σ(1) �= 1, the corresponding difference is zero. Therefore, c1 = (1 + T1)detd−1 −T1

detd−1 = detd−1. By induction, c1 =∑d
i=2

∏
j �=i,1 Tj +∏d

i=2 Ti. Then the determinant is∑d
i=2

∏
j �=i Tj +∏d

i=1 Ti +∏
j �=1 Tj, so the desired identity holds for d. �

Lemma 5.5. Let x1, . . . , xd> 0 and c1, . . . , cd ≥ 1 such that 1 −∏d
i=1 xi <

∑d
i=1 cixi < 1. Then

there exists z∈ Nd \ 0 such that zj

1+∑i ci zi
< xj for all j. �

Proof. Consider the convex set U = {z∈ Rd; ‖Az‖∞ < 1}, where A is the d× d matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1 − 1

x1
c2 cd

c1 c2 − 1

x2
cd

...
. . .

...

c1 · · · cd−1 cd − 1

xd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and the norm ‖ · ‖∞ is the maximum absolute value of the components. By Lemma 5.4,

we compute

det A= (−1)d
1 −∑

i cixi∏
i xi

.

By assumption, 0< | det A|< 1. Then volZd(U )= 2d

| det A| > 2d. The convex body U is sym-

metric about the origin. By Minkowski’s first theorem, there exists 0 �= z∈ Zd ∩ U . That

is z∈ Zd \ 0 and |∑i cizi − zj

xj
|< 1 for every j. We may suppose

∑
i cizi ≥ 0, after possibly

replacing z by −z.

The inequality
∑

i cizi − zj

xj
< 1 gives zj

xj
>−1, that is zj >−xj. Since ci ≥ 1, we

obtain
∑d

i=1 xi < 1. In particular, xj < 1. Therefore zj >−1, that is zj ≥ 0.

The other inequality −1<
∑

i cizi − zj

xj
is equivalent to zj

1+∑i ci zi
< xj. �

The following statement is the effective version of [14, Lemma 2.4]. The case q = 1

was obtained in [6, Theorem 1.1].

Theorem 5.6. Let q be a positive integer, let 1 ≤ c1, . . . , cd ≤ q. Let x1 ≥ · · · ≥ xd> 0 such

that
∑d

i=1 xi ≥∑d
i=1

q
1+ui,q

. Suppose xi �= q
1+ui,q

for some i. Then there exists z∈ Nd \ 0 such

that cj zj

1+∑i ci zi
< xj for every j. �

Proof. We may suppose
∑d

i=1 xi < 1. By Lemma 5.3 for
( xi

q

)
i, there exists 1 ≤ l ≤ d such

that
∏l

i=1 xi > ql
(
1 −∑l

i=1 xi
)
. In particular,

∏l
i=1 xi >

(∏l
i=1 ci

)(
1 −∑l

i=1 xi
)
.
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By Lemma 5.5 for
( xi

ci

)
i, there exists z∈ Nl \ 0 such that cj zj

1+∑l
i=1 ci zi

< xj for all 1 ≤
j ≤ l. Set zj = 0 for j > l. Then z∈ Nd \ 0 satisfies the claim. �

5.3 Upper bound for coefficient of asymmetry

The case q = 1 of the following result was obtained in [7, Theorem 2.1].

Theorem 5.7. Let q be a positive integer. Let N be a d-dimensional lattice and S a

simplex with vertices in N such that N ∩ int( 1
q S)= {0}. Then γ (0 ∈ S)≥ q

ud+1,q
, and equality

holds if and only if there exists an isomorphism N � Zd which maps S to the convex hull

of e0, . . . , ed, where e1, . . . , ed is the standard basis of Zd and e0 = −∑d
i=1

ud+1,q

1+ui,q
ei. �

Proof. Let v0, . . . , vd be the vertices of S. Let 0 =∑d
i=0 γivi be the barycentric coordinates

of the origin. Suppose γ0 = mini γi.

Suppose by contradiction that γ (0 ∈ S) < q
ud+1,q

. That is γ0 <
q

ud+1,q
. Then

∑d
i=1 γi >∑d

i=1
q

1+ui,q
. By Theorem 5.6, there exists z∈ Nd \ 0 such that qzi

1+∑i qzi
< γi (1 ≤ i ≤ d). Set

z0 = 0 and denote |z| =∑
i zi. We have

−q
∑

i

zivi =
∑

i

((1 + q|z|) γi − qzi) vi.

On the right-hand side, the coefficients of vi are positive, and add up to 1. Therefore

−q
∑

i zivi ∈ int(S). That is −∑i zivi ∈ N ∩ int( 1
q S) \ 0, a contradiction.

We conclude that γ0 ≥ q
ud+1,q

. Suppose now that γ0 = q
ud+1,q

. The above arguments

and Theorem 5.6 give γi = q
1+ui,q

for 1 ≤ i ≤ d. We obtain the barycentric coordinates

0 = q

ud+1,q
v0 +

d∑
i=1

q

1 + ui,q
vi.

In particular,
∑d

i=1
q

1+ui,q
(vi − v0)= −v0 ∈ N. Since (1 + ui,q)i are pairwise relatively prime,

we obtain q
1+ui,q

(vi − v0) ∈ N for every i. Since q | ui,q, we deduce vi − v0 = (1 + ui,q)wi for

some wi ∈ N. The vectors w1, . . . , wd ∈ N are linearly independent, and v0 = −q
∑d

i=1wi.

The inequality
∑d

i=1
1

1+ui,q
< 1

q implies v0 +∑d
i=1(0,1]wi ⊂ int( 1

q S). Let xi ∈ (0,1]

such that
∑d

i=1 xiwi ∈ N. Then v0 +∑d
i=1 xiwi ∈ N ∩ int( 1

q S). Therefore v0 +∑d
i=1 xiwi = 0.

Therefore xi = 1 for all i. We conclude that w1, . . . , wd is a basis for the lattice N.

But vi = (1 + ui,q)wi −∑d
j=1 qw j =∑

j aijw j (1 ≤ i ≤ d). By Lemma 5.4, we compute

det(aij)= 1. Therefore v1, . . . , vd is a basis of N. This induces an isomorphism N � Zd

such that vi (1 ≤ i ≤ d) correspond to the standard basis ei (1 ≤ i ≤ d), and v0 corresponds

to −∑d
i=1

ud+1,q

1+ui,q
ei. �

The following is the sharp version of [14, Corollary 3.2].
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Theorem 5.8. Let � ⊂ Rd be a compact polytope with vertices in Zd, of dimen-

sion d. Suppose Zd ∩ int� has cardinality q ≥ 1. Then for every P ∈ Zd ∩ int� we have

γ (P ∈ �)≥ q
ud+1,q

. �

Proof. Fix P ∈ �. We may replace � by � − P , so that P = 0. Suppose by contradiction

that γ (0 ∈ �) < q
ud+1,q

. By the simplex trick, there exists a simplex S with vertices among

those of �, which contains 0 in its relative interior, and γ (0 ∈ �)≥ γ (0 ∈ S).

Let dim S = d′ ≤ d. Then γ (0 ∈ S)≤ γ (0 ∈ �) < q
ud+1,q

≤ q
ud′+1,q

. By Theorem 5.7, there

exists 0 �= e ∈ Zd ∩ relint( 1
q S). Then 0, e,2e, . . . ,qe are q + 1 distinct lattice points in the

relative interior of S. They must be contained in Zd ∩ int�. Contradiction! �

As in [14, Theorem 3.6, Corollary 3.7], we obtain the following corollary.

Corollary 5.9. Let Zd,�,q as above. Then volZd(�)≤ q(ud+1,q

q )d and Zd ∩ � has cardinality

at most d+ d!q(ud+1,q

q )d. �

5.4 Errata to [4]

The upper bound n≤ cdqd in [4, Theorem 1.1] is not correct. In Step 1 of the proof, the con-

stant γ depends not only on d− 1, but on q as well. Since Λ� Zd−1, S has vertices in 1
qΛ

and Λ ∩ int(S)= {0}, Lemma 5.10 gives γ ≥ q
ud,q

. Step 2 of the proof gives j ≤ d!qd−1γ−d+1.

Since ja∈ Z, we obtain a correct effective upper bound for Theorem 1.1

n≤ d!ud−1
d,q q.

This bound is probably not sharp.

Lemma 5.10. Let S be a simplex with vertices in 1
q Zd, and such that {0} = Zd ∩ int(S).

Then γ (0 ∈ S)≥ q
ud+1,q

. �

Proof. The simplex S′ = qS has vertices in Zd and {0} = Zd ∩ int( 1
q S′). By Theorem 5.7,

γ (0 ∈ S′)≥ q
ud+1,q

. But γ (0 ∈ S′)= γ (0 ∈ S). �

6 Toric Log Fano Varieties

Let (X, B) be a toric log variety with log canonical singularities. So X = TNemb(Δ) is a

toric variety and B =∑
i(1 − ai)Ei with 0 ≤ ai ≤ 1. Since KX +∑

i Ei = 0, we obtain

KX + B =
∑

i

−ai Ei.
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Let σ ∈Δ(top). There exists ψσ ∈ MQ such that (χψσ )+ KX + B is zero on the open subset

Uσ of X. That is 〈ψσ , ei〉 = ai for every ei ∈ σ(1).

6.1 Minimal log discrepancies

Each e ∈ Nprim ∩ σ defines a toric valuation Ee over Uσ , with log discrepancy computed

by the formula

a(Ee; X, B)= 〈ψσ , e〉.

Since log resolutions exist in the toric category, we obtain

mld (Uσ ; X, B)= min {〈ψσ , e〉; 0 �= e ∈ N ∩ σ } .

The moment polytope associated with the Q-divisor −KX − B is

�−KX−B = {m ∈ MR; 〈m, ei〉 + ai ≥ 0 ∀ei ∈Δ(1)} .

It contains the origin of M. If ai > 0 for every i, denote by P the convex hull of ei
ai
(ei ∈

Δ(1)). We compute P ∗ = �. By duality,

inf {t> 0; e ∈ tP } = −h� (e) ∀e ∈ NR.

6.2 Toric weak log Fano varieties

Suppose moreover that X is proper and −KX − B is Q-semiample. Note that −KX − B is

Q-semiample if and only if it is nef. And if ai > 0 for every i, the Q-divisor −KX − B is

necessarily big.

The Q-semiampleness condition is equivalent to −ψσ ∈ �, for every σ ∈Δ(top).

And −KX − B is Q-ample if and only if the vertices of � are precisely (−ψσ )σ∈Δ(top). Let

e ∈ Nprim, let σ ∈Δ(top) contain e. Then � + ψσ ⊆ σ∨. Therefore 〈−ψσ , e〉 = h�(e). Therefore

a(Ee; X, B)= −h� (e)= − inf
m∈�

〈m, e〉.

We obtain the global formula mld(X, B)= − sup0 �=e∈N h�(e). By duality,

mld (X, B)= inf {t> 0; {0} � N ∩ tP } .

By Corollary 4.5, the α-invariant of −KX − B with respect to (X, B) is computed by the

formula

γ (X, B;−KX − B)= γ (0 ∈ �) .

By duality, γ (0 ∈ �)= γ (0 ∈ �∗). Denote d= dim X.
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Theorem 6.1. Let q be a positive integer. If mld(X, B)≥ 1
q , then γ (0 ∈ �)≥ q

ud+1,q
. �

Proof. The assumption gives ai ≥ 1
q for every i. Suppose by contradiction that γ < q

ud+1,q
.

By the simplex trick, there exists a simplex S, with vertices among those of �∗, such that

0 ∈ relintS and γ (0 ∈ S)≤ γ (0 ∈ �∗). Therefore

γ (0 ∈ S) <
q

ud+1,q
.

Let d′ ≤ d be the dimension of S, and ei
ai
(0 ≤ i ≤ d′) its vertices. Let γ0, . . . , γd′ > 0,

∑d′
i=0

γi = 1 and 0 =∑d′
i=0 γi

ei
ai
. We have γ (0 ∈ S)= mind′

i=0 γi. Say γ0 is minimal. Then γ0 <
q

ud+1,q
≤

q
ud′+1,q

, that is
∑d′

i=1 γi >
∑d′

i=1
q

ud′+1,q
. Note that 1 ≤ qai ≤ q. By Theorem 5.6, there exists z∈

Nd′ \ 0 such that
qaizi

1 +∑d′
j=1 qajzj

< γi
(
1 ≤ i ≤ d′) .

These inequalities are equivalent to

1

q
>

d′
max

i=1

aizi

γi
−

d′∑
j=1

ajzj.

The right-hand side is the smallest t> 0 such that e =∑d′
i=1 −ziei belongs to tS. Therefore

qe belongs to the relative interior of S, so in the interior of P as well.

We obtain 0 �= e ∈ N ∩ int( 1
q P ). Therefore mld(X, B) < 1

q , which is a contradiction.

�

Corollary 6.2. If mld(X, B)≥ 1
q , then d

√
(−KX − B)d ≤ d

q ud+1,q. �

Proof. By Proposition 3.10, γ · d
√
(−KX − B)d ≤ d. �

Example 6.3. The lower bound in Theorem 6.1 is sharp. In dimension one, (P1,
q−1

q · ∞)

is the only example which attains it. A higher dimensional example is constructed as

follows. Let e1, . . . , ed be the standard basis of Zd, and

e0 =
d∑

i=1

− ud+1,q

q
(
1 + ui,q

)ei.

Then e0, . . . , ed are primitive vectors in the lattice N = Zd, which they generate.

Set a0 = 1
q and a1 = · · · = ad = 1. This defines a toric log Fano variety (Xd, (1 − 1

q )E0)
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with

�−KX−B =
{

m ∈ Rd
≥−1;

d∑
i=1

ud+1,q

1 + ui,q
mi ≤ 1

}

= (−1, . . . ,−1)+
{

m ∈ Rd
≥0;

d∑
i=1

1

1 + ui,q
mi ≤ 1

q

}
.

The simplex �−KX−B = Conv(v0, . . . , vd) contains in interior the origin of M, with barycen-

tric coordinates

0 = q

ud+1,q
v0 +

d∑
i=1

q

1 + ui,q
vi.

So γ (X, B;−KX − B)= q
ud+1,q

. One checks that mld(X, B)= 1
q , Bs| − q(K + B)| = ∅ and

(−q(KX + B))d = ud+1,q

q . In particular, the upper bound in Corollary 6.2 is not sharp. �

Theorem 6.4 (cf. [8]). Fix d≥ 1 and ε ∈ (0,1]. Consider toric proper varieties X such that

dim X = d and there exists an invariant effective Q-divisor B such that −KX − B is Q-

semiample and mld(X, B)≥ ε. Then X belongs to finitely many isomorphism types. �

Proof. Let γ = γ (0 ∈ �−KX−B)= γ (0 ∈ P−KX−B). By Theorem 6.1, γ ≥ γ (d, ε) > 0. We have

εγ (P − P )⊆ εP . Therefore {0} = N ∩ int(εγ (P − P )). Theorem 5.1 gives

volN (P − P )≤ 1

γ dεd
.

Let C be the convex hull of Δ(1). Since C ⊆ P , we deduce that volN(C − C ) is bounded

above. Since C is a lattice polytope, it follows that the pair (N,C − C ) belongs to finitely

many isomorphism types. There exist only finitely many fans Δ with given Δ(1). There-

fore (N,Δ) belongs to finitely many isomorphism types. �

6.3 Examples

Consider toric log Fano varieties (X, B), of Picard number one, and such that X has

no nontrivial toric finite covers which are étale in codimension one. Let X = TNemb(Δ),

dim N = d. Then Δ(1)= {e0, . . . , ed}, where e0, . . . , ed ∈ N are primitive and generate the

lattice N, and no d of them are linearly dependent. The log discrepancies in invariant

prime divisors are rational numbers a0, . . . ,ad ∈ [0,1], not all zero. We have

0 =
d∑

i=0

xiei

(
xi ∈ Q>0,

∑
i

xi = 1

)
.
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The vector ei is primitive in the lattice generated by e0, . . . , ed if and only if ni = 1, where

ni = gcd (qx0, . . . , q̂xi, . . . ,qxd)

gcd (qx0, . . . ,qxd)

(
q ≥ 1,qx ∈ Zd+1) .

Up to isomorphism, (X, B) is uniquely determined by (xi)i and (ai)i. The dual polytope

�∗
−KX−B is the simplex with vertices ei/ai.

The dual description of (X, B) is: 0 ∈ � ⊂ MR is a rational simplex with vertices

v0, . . . , vd, and 0 lies at distance ai to the face of � opposite vi (distance measured with

respect to ei, the primitive interior direction normal to the face opposite to vi). Let

0 =
d∑

i=0

γivi

(
γi ≥ 0,

∑
i

γi = 1

)
.

Then γi = ai
wi

, where wi = width(�; ei). The above data are related as follows:

– 〈vi, ej〉 + aj = 0 for i �= j, and 〈v j, ej〉 + aj =w j.

–
(∑

i aixi
)(∑

i
1
wi

)= 1.

– xj =
1
w j∑d

i=0
1
wi

, γ j = aj xj∑d
i=0 ai xi

, w j =
∑

i ai xi

xj
.

We have KX + B +∑d
i=0 ai Ei ∼ 0. For 0 ≤ i ≤ d, set Di = (χvi )− KX − B =wi Ei. So

KX + B + Di ∼Q 0 and lct(X, B; Di)= γi.

Note that B = 0 if and only if ai = 1 for all i, and then xi = γi = 1
wi

for all i.

Lemma 6.5. r(KX + B) is Cartier if and only if Bs| − r(KX + B)| = ∅, if and only if

rai, rwi ∈ Z for every i. �

Lemma 6.6. γ (X, B;−KX − B)= mind
i=0 γi. �

Lemma 6.7. Let 0< ε ≤ mind
i=0 ai. Then mld(X, B)≥ ε if and only if there does not exist

an integer n≥ 0 such that
∑

i{(n+ 1)xi} = 1, {(n+ 1)x} �= x, and

d∑
i=0

ai {(n+ 1) xi} − ε <
d

min
j=0

w j
{
(n+ 1) xj

}
.

The fractional parts of vectors are defined componentwise. �

Proof. We clearly have mld(X, B)= a≤ mind
i=0 ai. Log discrepancies in toric valuations

are computed as follows: if e =∑d
i=0 tiei is a primitive vector in N, the induced toric
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valuation Ee has log discrepancy

a(Ee; X, B)= inf

{
ε > 0;

d∑
i=0

tiei ∈ ε · �∗
}

= d
max

j=0

d∑
i=0

aiti − w jtj.

We have a · �∗ ⊆ C = Conv(e0, . . . , ed). Therefore, the primitive vectors which attain a

must be contained in C . But N ∩ C is parametrized as follows:

N ∩ C \ {ei; i} =
{∑

i

{(n+ 1) xi} ei =
∑

i

−�(n+ 1) xi�ei; n≥ 0,
∑

i

{(n+ 1) xi} = 1

}
.

Note
∑

i{(n+ 1)xi} = 1 if and only if
∑�(n+ 1)xi� = n. And

∑
i{(n+ 1)xi}ei = 0 if and only

if {(n+ 1)x} = x, if and only if nx ∈ Zd+1. We obtain

a= min

(
d

min
i=0

ai, min∑
i{(n+1)xi}=1,{(n+1)x}�=x

∑
i

ai {(n+ 1) xi} − min
j
w j
{
(n+ 1) xj

})
. �

Lemma 6.7 has a geometric reformulation: let S = {x ∈ Rd+1
≥0 ;∑d

i=0 xi = 1}, with ver-

tices P0, . . . , Pd. Our point x =∑
i xi Pi lies in the interior of S. Let Sε(x) be the simplex

with vertices Qi = (1 − ε
ai
)x + ε

ai
Pi (0 ≤ i ≤ d). It is a neighborhood of x in S obtained by

sliding each vertex of S toward x, with a certain weight. Then:

• mld(X, B)≥ ε if and only if intSε(x) contains no {(n+ 1)x} other than x.

• x =∑
i γi Qi.

So both mld(X, B) and γ (X, B;−KX − B) are encoded by the neighborhood x ∈ Sε(x). The

condition mld(X, B)≥ ε means that the rational point x is badly approximated by the

fractional parts of its multiples, and Theorem 6.4 states that such x belong to a finite

set.

Lemma 6.8. Let ε ≤ mind
i=0 ai. Then mld(X, B) < ε if and only if one of the following

equivalent conditions hold:

(a) There exists n≥ 1 such that
∑d

i=0{(n+ 1)xi} = 1, {(n+ 1)x} �= x, and∑d
i=0 ai {(n+ 1) xi} − ε∑d

i=0 aixi

<
d

min
j=0

{
(n+ 1) xj

}
xj

.

(b) There exists z∈ Nd+1 such that max j w jzj −∑
i aizi ∈ (0, ε).

Moreover, z= �(1 + |z|)x�. So if z exists, it is uniquely determined by |z| and x. If qx ∈ Zd+1,

(b) can be decided by considering only the multiples x,2x, . . . , (q − 1)x. �

4446 F. Ambro

 by guest on O
ctober 27, 2016

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


Example 6.9. Suppose B = 0. That is ai = 1, xi = γi = 1
wi

. Then mld(X,0) < ε if and only

if there exists n≥ 1 such that {(n+ 1)x} �= x and 1 − ε <min j
{(n+1)xj}

xj
, if and only if there

exists z∈ Nd+1 \ 0 such that zj

ε+∑d
i=0 zi

< xj for every j. �
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