
 THE PUBLISHING HOUSE INFORMATION THEORY
 OF THE ROMANIAN ACADEMY Research article

COMPRESSION UP TO SINGULARITY: A MODEL FOR LOSSLESS COMPRESSION
AND DECOMPRESSION OF INFORMATION

Paul GAGNIUC1 and Constantin IONESCU-TÎRGOVIȘTE2

1 Faculty of Engineering in Foreign Languages, Politehnica University of Bucharest, Bucharest, Romania
2 “N.C. Paulescu” Institute, Bucharest, Romania

Corresponding author: Paul GAGNIUC, E-mail: paul_gagniuc@acad.ro

Accepted August 24, 2016

Data compression is a niche area of great interest for the information technology field. Here we
propose a novel theoretical concept for a total lossless compression and decompression of information
regardless of size. Two fundamental methods have been considered in the same context, namely the
use of hash functions and Markov chains. Our high-level strategy uses hashing to reduce message
size, combined with an encoding of Markov chain probabilities used for generating candidate
messages. The compression procedure is then applied recursively to the compressed representation to
further reduce its size. To decompress a message, a message generator is used based on the Markov
chain probabilities. For each candidate message, the hash function is applied and compared to the
known hashed message.

Key words: information; singularity; lossless; compression; hash; markov.

INTRODUCTION1

Lossless compression term summarizes those
methods that allow the integral reconstruction of the
original message from a compressed one1. Repeated
patterns in the initial message form the basis of all
lossless data compression algorithms used today.
Most often complex implementations are used push
against the redundancy limits of compression2-4.
However, a redundancy reduction strategy imposes
certain limitations related to the law of information
entropy5. In this regard, high information content
messages and randomly generated messages contain
less redundant information and make further
reductions unlikely6-9. In the past, by considering
the transition probabilities between letters/words
from a large number of natural English texts,
Claude Shannon has shown that an n-state Markov
Chain can be used for creating meaningful artificial
messages that accurately resemble the human text
construct5,10,11. Thus, the transition probabilities
were derived from a large number of different
messages. In a similar manner, we have wondered
what would be the behavior of a Markov Chain if

1 Proc. Rom. Acad., Series B, 2016, 18(3), p. 169–174

the transition probabilities between letters are
extracted from a single message? Can the Markov
Chain reach the initial message after a large number
of runs? Moreover, if the initial message is
unknown, then how can we detect if the Markov
Chain has reached the initial message? If the
transition probabilities between letters of the initial
message are known, the rationale for the first two
questions dictates that there would be no reason
why it could not reach the initial message. In this
case the only consideration of the Markov Chain
would be the number of runs per unit of time.
However, to know when the Markov Chain has
reached the initial message a different reasoning has
been used. We further wondered whether a small
unique identifier may be generated from the initial
message. Thus, we resorted to the use of hash
functions. In theory, ideal hash functions are used to
create unique identifiers (keys) for specific finite
messages12-14. Thus, a hashing function receives a
variable length message and generates a small key
of a constant length. Therefore, these functions have
a wide range of security applications from databases
to communications. Nevertheless, a prominent
property of the most advanced hash functions is the
power of reduction regardless of the redundancies

170 Paul Gagniuc and Constantin Ionescu-Tîrgoviște

inside the initial message. This property has not yet
been explored in regard to data compression since
one way hash functions are not reversible. This
implies that the initial message can not be directly
recreated relying only on the hash key. One of the
many reasons is that for a large number of
messages, a constant length of the hash keys limits
the number of possible keys that can be assigned by
the function. Thus, for a very large set of messages,
any hashing function will inevitably associate a key
to a subset of messages (an event called collision)15-18.
In a hypothetical case one can not know which of
those messages is the initial one. However, in
practice other verification mechanisms related to
message integrity can be implemented to avoid
collisions between messages. In this thought
experiment, one last question would be whether a
method can be found by which the original message
can be obtained using the hash key. As a result, here

we propose a model for a total compression and
decompression of information in which three main
components are used: 1) a one way hash function
(h), 2) a transition probability function (Tr), and
3) an n-state Markov Chain Generator (MCG).

COMPRESSION TO SEED

In the case of compression the transition
probabilities of the initial message and a hashing
function are used for a gradual reduction of
information (Figure 1). Instead of text, we consider
that the initial message (Mi) consists of a string of
1s and 0s. The initial message (Mi) is divided into
smaller segments (X1 … Xn) of constant length (Lx).
For each segment (X1 … Xn) a hash value is
generated h(X1) … h(Xn)).

Fig. 1. Compression. (A) The initial message (Mi) is divided into smaller segments X1 … Xn (in blue) from which a chain of seeds
is generated (h(X1),Tr(X1) … h(Xn),Tr(Xn)), (B) the chain of seeds becomes the new message (Mi+1), (C) the new message (Mi+1) is
divided into smaller segments (X1 … Xn) from which a chain of seeds is again generated, (D) the new chain of seeds becomes the

new message once again (Mi+2), (E) the Mi+2 message generates the last seed, (F) an rationalization of the model in which any finite
message is reduced to one seed, (G) a graphical representation of the reduction process in which the new chain of seeds becomes the

new message until singularity is achieved.

Next, the transition probabilities between 1s and
0s can be calculated using a transition probability
function (Tr(X1) … Tr(Xn)). The transition
probability function (Tr) should provide at least two
values, namely P0 and P1 (see decompression).

Thus, the X1 … Xn segments are reduced to “seeds”
of constant length (Ls), that consist of a series of
hash values each followed by transition probability
values derived from the corresponding segment
(S(1…m) = h(X1),Tr(X1) … h(Xn),Tr(Xn)). In the next

Compression up to singularity 171

step the chain of seeds (S(1…m)) is considered, the
new message (Mi+1) and the process of compression
is repeated (Figure 1B). At each repetition the
algorithm should add a counter variable (Cn) to the
seed chain, which is intended to show the
compression depth. Thus, this process is repeated
until all that remains from the initial message is one
seed S1= (h(X1),Tr(X1),Cn) consisting of one hash
value, transition probabilities (P0,P1), and the
counter variable (Figure 1E,G). Nevertheless,
before these seeds (S(1…m)) can be considered as a
new message (Mi+1), the algorithm must ensure that
the seeds will occupy the entire space allocated for
the next X1 … Xn, namely a multiple of Lx. At each
repetition the length of the resulting chain of seeds
(h(X1),Tr(X1) … h(Xn),Tr(Xn)) will not always
match the entire length of the X1 … Xn segments
from the next step in the compression process
(Figure 1A). Therefore, a “ballast” function is

introduced, namely B(Lx×n-Ls×m). The B function
aims to insert random information in the remaining
space (Lx×n-Ls×m). The addition of random
information is not relevant (since the algorithm is
time-dependent) and is removed at decompression
time (see decompression). Of course, the ballast
function is optional since the length of a seed (Ls) is
constant and Lx can be calculated prior to
compression.

DECOMPRESSION OF SEED

In the case of decompression the hash value
(h(X1)) and the transition probabilities (Tr(X1))
stored in the initial seed (S1 = (h(X1),Tr(X1),Cn)) are
used for a gradual expansion of information (Figure 2).
As an example, a two-state Markov Chain
Generator (MCG) has been considered (Figure 2C).

Fig. 2. Decompression. (A) initial seed, (B) decomposition of the seed in the two main components, namely the hash value (red)

and the transition probability values (blue), (C) the two-state Markov Chain Generator (MCG). The MCG message (XMC) is
generated within the limits imposed by the two transition probability values (Tr(X1)) of the seed. (D) A hash value is made from the
MCG message (h(XMC)), (E) If the new hash value (h(XMC)) is identical to the hash value (h(X1)) of the seed then the message under
h(X1) is temporarily found, (F) the integrity check function (Ic(XMC)) examines the presence of delimiters in order to avoid a random

message that may generate the same hash value. If delimiters are not found then a new message (XMC) is generated by the MCG
within the limits imposed by the two transition probability values (Tr(X1)) of the seed. If Cn = 0 then the initial message (Mi) has

been entirely reconstructed, (G) If Cn > 0 the balast and the Cn variable are removed and the new seeds are independently
decompressed in a new cycle.

The MCG receives the task of generating a
message (XMC) of length Lx within the limits

imposed by the two transition probability values (P0
and P1) of the seed (Figure 2A,B,C). A new hash

172 Paul Gagniuc and Constantin Ionescu-Tîrgoviște

value (h(XMC)) is calculated for each segment
generated by MCG (Figure 2D). The new hash
value (h(XMC)) is then compared with the hash
value (h(X1)) of the original segment (Figure 2E). If
the two hash values do not coincide then the MCG
will proceed forward and generate a new segment
(Figure 2E,C,D). However, if the hash value of the
new segment (h(XMC)) and the hash value of the
original segment (h(X1)) have the same value then it
is considered that the original segment has been
temporarily found (XMC = X1). If XMC is identical to
the original (X1) then it must contain seeds and a
counter variable (Figure 2E,F). Because hash
functions could sometimes associate a hash value to
multiple messages, an integrity check (Ic(XMC)) of
the XMC is made in order to avoid collisions. Such a
verification is based on the presence of delimiters at
equal length intervals between seeds in the XMC
sequence. If the integrity check function (Ic(XMC))
does not detect the presence of delimiters, the MCG
will proceed forward to a new XMC segment.
Otherwise, if the integrity check function (Ic(XMC))
detects the presence of delimiters, then it may be
considered that the original segment (X1) has been
found and no collisions have occurred (Figure 2F).
Therefore, the first step in the decompression
process can be completed and the Cn variable
verified. Since XMC contains a series of new seeds
the next phase begins. The seeds are extracted from
the XMC whereas the balast and the Cn variable are
removed (Figure 2F,G). Next, each seed from the
XMC segment will go through the same process of
decompression described above until Cn = 0 (Figure
2G). When Cn equals zero the initial message (Mi)
has been found (Figure 2F).

DISCUSSIONS

Here we propose a theoretical model for data
compression. In the case of compression the
transition probabilities of the initial message and a
hashing function are used for a gradual reduction of
information, whereas the gradual expansion of
information begins through the use of the hash
value and the transition probabilities stored in the
initial seed (Figure 1 and Figure 2).

This paper proposes a data compression scheme
that uses one-way hash functions for compression.
In the proposed scheme, the data source is
segmented and a hash value is calculated for each
segment and stored together with transition
probabilities in order to form the seed (i.e.,

compressed representation of the source). The
method is applied recursively until only a single
hash value and a set of transition probabilities
remain. In order to reconstruct the source, a Markov
chain generator is used for the synthesis of the
source segments that lead to similar hash values as
the ones obtained in the compression phase.
Additional overhead is required to avoid hash
collisions in the reconstruction.

Variations of the method may also be used. For
instance, for refining the decompression process the
two states of the MCG can be increased. Although
an implementation of this method may reache full
compression as fast as the algorithms used today,
the situation would be different in the case of
decompression. Since the MCG acts as an
uncertainty reducer the decompression time would
be difficult to accurately assess. Overall the method
can be applicable using the computing power of
today, however, the decompression time would
perhaps be too high for immediate applications.
With the evolution of quantum computers, this
method may have practical applications in the
future. The exponential growth of the seeds makes
it an ideal candidate for quantum processing19.

CONCLUSION

A unique identifier (a hash key) followed by two
transition probability values is defined as a seed.
Here we show a method by which large sized
messages are reduced to a seed and vice versa.
Initially, large sized messages are reduced to a
chain of seeds. Each chain of seeds is then gradually
reduced in the same manner until only one seed
remains. In contrast, for expansion of information a
Markov Chain Generator (MCG) uses the two
transition probability values of a seed to recreate the
message behind the hash value of the same seed. If
found, underlying the message are other seeds that
follow the same process until the original message
is recreated without loss.

REFERENCES

1. Smith S.W., “The Scientist and Engineer’s Guide to Digital
Signal Processing”, California Technical Publishing, 1997.

2. Sayood K., “Introduction to Data Compression”, Morgan
Kaufmann Publishers, 2000.

3. Held G., Marshell T.R., “Data and Image Compression”,
John Wiley and Sons, 1996.

Compression up to singularity 173

4. Gryder R., Hake K., “Survey of Data Compression
Techniques”, ORNL/TM-11797, 1991.

5. Shannon, C.E., A Mathematical Theory of Communication.
Bell System Technical Journal, 1948, 27: 379–423.

6. Drost G.W., Bourbakis N.G., A hybrid system for real-time
lossless image compression, Microprocessors and
Microsystems, 2001, 25 (1): 19–31.

7. Yu-Chen H., Chang C.C., A new lossless compression
scheme based on Huffman coding scheme for image
compression, Signal Processing: Image Communication,
2000, 16(4): 367–372.

8. Asli A.Z., Alipour S., An effective method for still image
compression–decompression for transmission on PSTN
lines based on modification of Huffman coding, Computer
and Electrical Engineering, 2004, 30 (2): 129–145.

9. Lelewer D.A., Hirschberg D.S., Data compression, ACM
Computing Surveys, 1987, 19(3): 261–296.

10. Марков А.А., Распространение закона больших чисел
на величины, зависящие друг от друга. Известия
Физико-математического общества при Казанском
университете, 2-я серия, том 15, ст. 135–156, 1906.

11. Markov A.A., “Extension of the limit theorems of
probability theory to a sum of variables connected in a
chain”. Reprinted in Appendix B of: R. Howard. Dynamic
Probabilistic Systems, volume 1: Markov Chains. John
Wiley and Sons, 1971.

12. Preneel B., “Analysis and design of cryptographic hash
functions”, PhD thesis, Katholieke Universiteit Leuven,
1993.

13. Preneel B., Govaerts R., and Vandewalle J., Hash
Functions Based on Block Ciphers: A Synthetic Approach.
Lecture Notes in Computer Science, 1994, 773:368–378.

14. Preneel B., Cryptographic primitives for information
authentication – state of the art. Lecture Notes in Computer
Science, 1998, 1528:49–104.

15. den Boer B. and Bosselaers A., Collisions for the
compression function of MD-5. Lecture Notes in Computer
Science, 1994, 765:293–304.

16. Hohl W., Lai X., Meier T., Waldvogel C., Security of
iterated hash functions based on block ciphers. Lecture
Notes in Computer Science, 1994, 773:379–390.

17. van Oorschot P.C. and Wiener M.J., Parallel collision
search with cryptanalytic applications. Journal of
Cryptology, 1999, 12(1):1–28.

18. van Rompay B., “Analysis and design of cryptographic
hash functions, MAC Algorithms and Block Ciphers”, PhD
thesis, Katholieke Universiteit Leuven, 2004.

19. DiVincenzo, David P., Quantum Computation. Science,
1995, 270 (5234): 255–261.

