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Data compression is a niche area of great interest for the information technology field. Here we 
propose a novel theoretical concept for a total lossless compression and decompression of information 
regardless of size. Two fundamental methods have been considered in the same context, namely the 
use of hash functions and Markov chains. Our high-level strategy uses hashing to reduce message 
size, combined with an encoding of Markov chain probabilities used for generating candidate 
messages. The compression procedure is then applied recursively to the compressed representation to 
further reduce its size. To decompress a message, a message generator is used based on the Markov 
chain probabilities.  For each candidate message, the hash function is applied and compared to the 
known hashed message. 
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INTRODUCTION1 

Lossless compression term summarizes those 
methods that allow the integral reconstruction of the 
original message from a compressed one1. Repeated 
patterns in the initial message form the basis of all 
lossless data compression algorithms used today. 
Most often complex implementations are used push 
against the redundancy limits of compression2-4. 
However, a redundancy reduction strategy imposes 
certain limitations related to the law of information 
entropy5. In this regard, high information content 
messages and randomly generated messages contain 
less redundant information and make further 
reductions unlikely6-9. In the past, by considering 
the transition probabilities between letters/words 
from a large number of natural English texts, 
Claude Shannon has shown that an n-state Markov 
Chain can be used for creating meaningful artificial 
messages that accurately resemble the human text 
construct5,10,11. Thus, the transition probabilities 
were derived from a large number of different 
messages. In a similar manner, we have wondered 
what would be the behavior of a Markov Chain if 
 
1 Proc. Rom. Acad., Series B, 2016, 18(3), p. 169–174 

the transition probabilities between letters are 
extracted from a single message? Can the Markov 
Chain reach the initial message after a large number 
of runs? Moreover, if the initial message is 
unknown, then how can we detect if the Markov 
Chain has reached the initial message? If the 
transition probabilities between letters of the initial 
message are known, the rationale for the first two 
questions dictates that there would be no reason 
why it could not reach the initial message. In this 
case the only consideration of the Markov Chain 
would be the number of runs per unit of time. 
However, to know when the Markov Chain has 
reached the initial message a different reasoning has 
been used. We further wondered whether a small 
unique identifier may be generated from the initial 
message. Thus, we resorted to the use of hash 
functions. In theory, ideal hash functions are used to 
create unique identifiers (keys) for specific finite 
messages12-14. Thus, a hashing function receives a 
variable length message and generates a small key 
of a constant length. Therefore, these functions have 
a wide range of security applications from databases 
to communications. Nevertheless, a prominent 
property of the most advanced hash functions is the 
power of reduction regardless of the redundancies 
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inside the initial message. This property has not yet 
been explored in regard to data compression since 
one way hash functions are not reversible. This 
implies that the initial message can not be directly 
recreated relying only on the hash key. One of the 
many reasons is that for a large number of 
messages, a constant length of the hash keys limits 
the number of possible keys that can be assigned by 
the function. Thus, for a very large set of messages, 
any hashing function will inevitably associate a key 
to a subset of messages (an event called collision)15-18. 
In a hypothetical case one can not know which of 
those messages is the initial one. However, in 
practice other verification mechanisms related to 
message integrity can be implemented to avoid 
collisions between messages. In this thought 
experiment, one last question would be whether a 
method can be found by which the original message 
can be obtained using the hash key. As a result, here 

we propose a model for a total compression and 
decompression of information in which three main 
components are used: 1) a one way hash function 
(h), 2) a transition probability function (Tr), and  
3) an n-state Markov Chain Generator (MCG).  

COMPRESSION TO SEED 

In the case of compression the transition 
probabilities of the initial message and a hashing 
function are used for a gradual reduction of 
information (Figure 1). Instead of text, we consider 
that the initial message (Mi) consists of a string of 
1s and 0s. The initial message (Mi) is divided into 
smaller segments (X1 … Xn) of constant length (Lx). 
For each segment (X1 … Xn) a hash value is 
generated h(X1) … h(Xn)). 

 
 

 
Fig. 1. Compression. (A) The initial message (Mi) is divided into smaller segments X1 … Xn (in blue) from which a chain of seeds  
is generated (h(X1),Tr(X1) … h(Xn),Tr(Xn)), (B) the chain of seeds becomes the new message (Mi+1), (C) the new message (Mi+1) is 
divided into smaller segments (X1 … Xn) from which a chain of seeds is again generated, (D) the new chain of seeds becomes the 

new message once again (Mi+2), (E) the Mi+2 message generates the last seed, (F) an rationalization of the model in which any finite 
message is reduced to one seed, (G) a graphical representation of the reduction process in which the new chain of seeds becomes the 

new message until singularity is achieved. 

Next, the transition probabilities between 1s and 
0s can be calculated using a transition probability 
function (Tr(X1) … Tr(Xn)). The transition 
probability function (Tr) should provide at least two 
values, namely P0 and P1 (see decompression). 

Thus, the X1 … Xn segments are reduced to “seeds” 
of constant length (Ls), that consist of a series of 
hash values each followed by transition probability 
values derived from the corresponding segment 
(S(1…m) = h(X1),Tr(X1) … h(Xn),Tr(Xn)). In the next 
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step the chain of seeds (S(1…m)) is considered, the 
new message (Mi+1) and the process of compression 
is repeated (Figure 1B). At each repetition the 
algorithm should add a counter variable (Cn) to the 
seed chain, which is intended to show the 
compression depth. Thus, this process is repeated 
until all that remains from the initial message is one 
seed S1= (h(X1),Tr(X1),Cn) consisting of one hash 
value, transition probabilities (P0,P1), and the 
counter variable (Figure 1E,G). Nevertheless, 
before these seeds (S(1…m)) can be considered as a 
new message (Mi+1), the algorithm must ensure that 
the seeds will occupy the entire space allocated for 
the next X1 … Xn, namely a multiple of Lx. At each 
repetition the length of the resulting chain of seeds 
(h(X1),Tr(X1) … h(Xn),Tr(Xn)) will not always 
match the entire length of the X1 … Xn segments 
from the next step in the compression process 
(Figure 1A). Therefore, a “ballast” function is 

introduced, namely B(Lx×n-Ls×m). The B function 
aims to insert random information in the remaining 
space (Lx×n-Ls×m). The addition of random 
information is not relevant (since the algorithm is 
time-dependent) and is removed at decompression 
time (see decompression). Of course, the ballast 
function is optional since the length of a seed (Ls) is 
constant and Lx can be calculated prior to 
compression. 

DECOMPRESSION OF SEED 

In the case of decompression the hash value 
(h(X1)) and the transition probabilities (Tr(X1)) 
stored in the initial seed (S1 = (h(X1),Tr(X1),Cn)) are 
used for a gradual expansion of information (Figure 2). 
As an example, a two-state Markov Chain 
Generator (MCG) has been considered (Figure 2C).  

 

 
Fig. 2. Decompression. (A) initial seed, (B) decomposition of the seed in the two main components, namely the hash value (red)  

and the transition probability values (blue), (C) the two-state Markov Chain Generator (MCG). The MCG message (XMC) is 
generated within the limits imposed by the two transition probability values (Tr(X1)) of the seed. (D) A hash value is made from the 
MCG message (h(XMC)), (E) If the new hash value (h(XMC)) is identical to the hash value (h(X1)) of the seed then the message under 
h(X1) is temporarily found, (F) the integrity check function (Ic(XMC)) examines the presence of delimiters in order to avoid a random 

message that may generate the same hash value. If delimiters are not found then a new message (XMC) is generated by the MCG 
within the limits imposed by the two transition probability values (Tr(X1)) of the seed. If Cn = 0 then the initial message (Mi) has 

been entirely reconstructed, (G) If Cn > 0 the balast and the Cn variable are removed and the new seeds are independently 
decompressed in a new cycle. 

The MCG receives the task of generating a 
message (XMC) of length Lx within the limits 

imposed by the two transition probability values (P0 
and P1) of the seed (Figure 2A,B,C). A new hash 
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value (h(XMC)) is calculated for each segment 
generated by MCG (Figure 2D). The new hash 
value (h(XMC)) is then compared with the hash 
value (h(X1)) of the original segment (Figure 2E). If 
the two hash values do not coincide then the MCG 
will proceed forward and generate a new segment 
(Figure 2E,C,D). However, if the hash value of the 
new segment (h(XMC)) and the hash value of the 
original segment (h(X1)) have the same value then it 
is considered that the original segment has been 
temporarily found (XMC = X1). If XMC is identical to 
the original (X1) then it must contain seeds and a 
counter variable (Figure 2E,F). Because hash 
functions could sometimes associate a hash value to 
multiple messages, an integrity check (Ic(XMC)) of 
the XMC is made in order to avoid collisions. Such a 
verification is based on the presence of delimiters at 
equal length intervals between seeds in the XMC 
sequence. If the integrity check function (Ic(XMC)) 
does not detect the presence of delimiters, the MCG 
will proceed forward to a new XMC segment. 
Otherwise, if the integrity check function (Ic(XMC)) 
detects the presence of delimiters, then it may be 
considered that the original segment (X1) has been 
found and no collisions have occurred (Figure 2F). 
Therefore, the first step in the decompression 
process can be completed and the Cn variable 
verified. Since XMC contains a series of new seeds 
the next phase begins. The seeds are extracted from 
the XMC whereas the balast and the Cn variable are 
removed (Figure 2F,G). Next, each seed from the 
XMC segment will go through the same process of 
decompression described above until Cn = 0 (Figure 
2G). When Cn equals zero the initial message (Mi) 
has been found (Figure 2F). 

DISCUSSIONS 

Here we propose a theoretical model for data 
compression. In the case of compression the 
transition probabilities of the initial message and a 
hashing function are used for a gradual reduction of 
information, whereas the gradual expansion of 
information begins through the use of the hash 
value and the transition probabilities stored in the 
initial seed (Figure 1 and Figure 2).  

This paper proposes a data compression scheme 
that uses one-way hash functions for compression. 
In the proposed scheme, the data source is 
segmented and a hash value is calculated for each 
segment and stored together with transition 
probabilities in order to form the seed (i.e., 

compressed representation of the source). The 
method is applied recursively until only a single 
hash value and a set of transition probabilities 
remain. In order to reconstruct the source, a Markov 
chain generator is used for the synthesis of the 
source segments that lead to similar hash values as 
the ones obtained in the compression phase. 
Additional overhead is required to avoid hash 
collisions in the reconstruction. 

Variations of the method may also be used. For 
instance, for refining the decompression process the 
two states of the MCG can be increased. Although 
an implementation of this method may reache full 
compression as fast as the algorithms used today, 
the situation would be different in the case of 
decompression. Since the MCG acts as an 
uncertainty reducer the decompression time would 
be difficult to accurately assess. Overall the method 
can be applicable using the computing power of 
today, however, the decompression time would 
perhaps be too high for immediate applications. 
With the evolution of quantum computers, this 
method may have practical applications in the 
future. The exponential growth of the seeds makes 
it an ideal candidate for quantum processing19.  

CONCLUSION 

A unique identifier (a hash key) followed by two 
transition probability values is defined as a seed. 
Here we show a method by which large sized 
messages are reduced to a seed and vice versa. 
Initially, large sized messages are reduced to a 
chain of seeds. Each chain of seeds is then gradually 
reduced in the same manner until only one seed 
remains. In contrast, for expansion of information a 
Markov Chain Generator (MCG) uses the two 
transition probability values of a seed to recreate the 
message behind the hash value of the same seed. If 
found, underlying the message are other seeds that 
follow the same process until the original message 
is recreated without loss. 
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