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Abstract. The paper presents the mathematical modelling of the direct kinematics and singularities 
for a parallel robotic system designed for prostate biopsy. The mathematical description is obtained 
using Study parameters of SE(3) with quaternion representation. Based on the robot architecture and 
the active joint values, numerical solutions are presented for kinematics, and singularity conditions 
are obtained in the active joint space.  
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1. INTRODUCTION 

Prostate cancer has an increased risk factor among men [1, 2], and the rate of survival is correlated with 
the tumor staging (the survival rate in early stages is 99.9% and drops to 28% in later detection stages). As 
manual biopsies are carried in a blind way (based on current protocols), they often lead to false negative 
results. Thus, to enable cancer detection in early stages, accurate, targeted biopsies are required which leads 
to the introduction of robotics in such procedures [3]. For prostate biopsy, there are two ways of accessing 
the tissue, namely transperineal prostate biopsy (the needle is inserted into the prostate tissue through the 
patients perineum), and transrectal prostate biopsy (the needle is inserted through wall of the rectum into the 
prostate). A recent review published in Nature points out some advantages of the transperienal approach: it 
greatly reduces the risk of septicemia, it allows the sampling of the entire prostate (the apex is not reachable 
transrectaly) [4]. Moreover, medical imaging techniques are used (computerisez tomography, magnetic 
resonance imaging and transrectal ultrasonography) for targeted biopsies, to serve as procedure planning and 
real time intervention monitoring, with a variety of robotic structures used for biopsy and brachytherapy are 
synthetized into a document [5]. Novel robotic structures are also found in the literature, such as BIO-PROS 
1 parallel robot for trasnsperineal prostate biopsy [6, 7]. A general mathematical method for solving 
kinematics and singularities is a vector method, with the problem of naturally occurring trigonometric 
functions in the equations, which may be substituted using the half tangent angle [8, 9, 10]. In some cases the 
kinematics may be determined even with experimental methods [11], based on advanced sensors used to 
capture and measure information that presents interest for monitoring and evaluating different kinematic or 
kinetic parameters of humans or robotic structures [12]. Study parameters of SE(3) is an algebraic method 
that proved to be an efficient in solving kinematic problems and describe singularities for closed loop 
mechanisms. The method was used to describe mechanisms, such as, the Stewart-Gough platform [8] and the 
3-RPS manipulator [13], and it suggested more singularities than the vector method in the analysis of a 
brachytherapy robot [14, 15]. The goal of the paper is to determine a parametric mathematical description of 
the mechanism in polynomial form using Study parameters. This in turn leads to parametric characterization 
of the singular loci. By substituting the design parameters (e.g. lengths of the robot links) with numerical 
values the singularities are obtain for the proposed robotic structure, which will be implemented as a safety 
control function directly in the robot control. The paper is structured as follows: relevant mathematical 
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concepts are defined and explained in Section 2; Section 3 presents the BIO-PROS 1 robotic structure and 
the results of forward kinematic modelling, singularity analysis, and workspace generation; Section 4 treats 
conclusions and future research. 

2. STUDY PARAMETERIZATION OF EUCLIDEAN DISPLACEMENT 

 To begin the mathematical description of the Study parameterization, the Euclidean displacement of a 
mobile frame X'(x',y',z')T, relative to a fixed frame X(x,y,z)T  the matrix relation is used tXRX +⋅='  [8], 
where R’ is a 3 × 3 proper orthogonal matrix and t = [tx, ty, tz]T is a translation vector. A more convenient way 
to write the total Euclidean displacement is by using a 4 × 4 homogeneous transformation matrix (Eq. 1), 
where X’ and X  have the form [1, x’, y’, z’]T and [1, x’, y’, z’]T and the Euclidean displacement 
( tXRX +⋅=' ) is satisfied through 'X M X= ⋅ . 
 

              
1 0

M
t R
 
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 (1) 

 
By using the quaternion notation (with a quaternion X = x0+x1i+x2j+x3k) the proper orthogonal matrix R can 
be written as follows (xi being also called the Euler parameters) [8, 9]: 
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By introducing a second quaternion (Y = y0+y1i+y2j+y3k) and by accounting for the normalizing condition 
(x2

0+x2
1+x2

2+x2
3 = 1 which is a necessary condition for R to be a rotation matrix) and the Study quadric 

(x0y0+x1y1+x2y2+x3y3 = 0) [8], the total Euclidean displacement may be written in the form of Eq. (1) with R 
in quaternion form and t(tx, ty, tz): 
 

                         0 1 1 0 3 2 2 32( )xt x y x y x y x y= − − +  (3) 
                         0 2 2 0 1 3 3 12( )yt x y x y x y x y= − − +  (4) 

                            0 3 3 0 2 1 1 22( )zt x y x y x y x y= − − + . (5) 
 
The total Euclidean displacement may be written in the form x0:x1:x2:x3:y0:y1:y2:y3 which are called Study 
parameters [8], with the xi representing rotation parameters and the yi representing translation parameters: 
 

0 1 2 3: : :x x x x =  122131132332332211 :::1 aaaaaaaaa −−−+++  
 311312213322112332 ::1: aaaaaaaaa ++−−+−  
 322333221121123113 :1:: aaaaaaaaa +−+−+−  
 21 12 31 13 23 31 11 22 33: : :1a a a a a a a a a− + + − − +  

(6) 

 

0 1 2 3 1 2 3 0 3 2 3 0 1 2 1 0
1 1 1 1: : : ( ) : ( ) : ( ) : ( )
2 2 2 2x y z x y z x y z x y zy y y y t x t x t x t x t x t x t x t x t x t x t x t x= + + − − + − − − + − . (7) 

 
The aij terms in Eq. (6) are entries to a 3 × 3 orthogonal matrix (Eq. 2) were a11=x0+x1–x2–x3, a12=–2(x0x3-
x1x2) and so on. To obtain solutions for Study parameters, algebraic geometry methods are used. Powerful 
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concepts such as ideals of varieties and Groebner bases are used in computing the kinematic and singularity 
problems, as they correspond to (projective) varieties in Study parameters space, and by adding the 
normalizing condition (x2

0+x2
1+x2

2+x2
3=1) the varieties become affine. This offers the opportunity to 

compute the solutions for the forward kinematics and singularities using algebraic geometry methods as 
detailed in Section 3. 

3. A PARALLEL ROBOTIC SYSTEM FOR PROSTATE BIOPSY 

  To perform the medical task, BIO-PROS 1 consists of two independent guiding modules: the needle 
guiding module, and the TRUS probe guiding module that will function as follows: the TRUS probe will be 
inserted through the patient rectum to enable real-time imaging of the prostate and the needle guiding 
module will insert the biopsy gun needle (using a specialised instrument with 1 redundant DOF) through the 
patient perineum and retrieve the tissue samples under the visual monitoring of the TRUS probe. Small 
needle angulation of about ±10° is required to allow the targeting of the entire prostate volume [3]. 
Regarding safety and reduced risk factor, the parallel architecture is proposed for increased precision and 
stability, while the large amplitude motion is not needed for the biopsy task. 

3.1. MECHANISM DESCRIPTION 

A schematic representation of BIO-PROS 1 robotic system and its' relative position with respect to the 
patient, is illustrated in Fig. 1 [7]. The 2 independent modules, have 5-DOF each, with the rotation around 
the longitudinal axis of the instrument (biopsy gun and TRUS probe) suppressed. 

 
Fig. 1 – BIO-PROS 1 robotic system for transperineal prostate biopsy. 

The first module of the robotic system (TRUS probe module), integrates two kinematic chains as illustrated 
in Fig. 2. The first kinematic chain (kinematic chain 1) is a 3-DOF parallel structure with two actuated joints 
(q4 and q5) which works in cylindrical coordinates, having the rotation around the common axis of the 
actuated joints as a free motion. The second kinematic chain (kinematic chain 2) is a 3-DOF parallel 
structure with three actuated joints (q1, q2 and q3) with constant platform orientation. The two chains are 
placed in planes that are orthogonal to each other, and they are linked through a pair of Cardan joints. The 
linkage between the two kinematic chains defines the end effector of the robot which guides the TRUS 
probe. The second module of the robotic system (Fig. 3 – biopsy gun module), has the same modular 
structure as the first one, with the difference that both mechanical chains are placed on the same plane of the 
robot fixed frame. To relate the coordinate frames of the biopsy gun module to the TRUS module one has to 
use a transformation involving a rotation around O*Z* by π/2 and a translation on O*X* by L.  
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Fig. 2 – BIO-PROS 1 – TRUS guiding module. 

 

Fig. 3 – BIO-PROS 1 – biopsy gun guiding module. 

By using the center point S (resp. S*) of the platform, which has a fixed orientation, both modules can be 
computed in the same manner. The TRUS guiding module is chosen for the computation (see Fig. 2). Two 
coordinate frames are defined: a fixed frame OXYZ attached to the robot base, with the Z axis pointing 
upwards along the actuation axis of q4 and q5, and the X axis pointing towards the patient; a mobile frame 
O'X'Y'Z' with its origin located at the tip of the medical instrument at a distance n from the midpoint of the 
link that connects the two cardan joints qr1 and qr2. The kinematic paths 1 and 2 (Fig. 2) are introduce to 
proceed with the computation and they are defined as following with point S being chosen to facilitate the 
computation using the Study model: kinematic path 1 (kp 1)  starts with q4 and q5, follows the kinematic 
chain 1 of the manipulator through the cardan joint  qr1, and intersects with kinematic path 2 in the origin of 
the moving coordinate frame O'X'Y'Z'; kinematic path 2 starts from point S (the end of the kinematic chain 
2), follows the kinematic path through the cardan joint qr2 and intersects with the kp 1 in the origin of the 
moving frame. 

3.2. FORWARD KINEMATIC MODEL 

 A simplified kinematic scheme of the TRUS module is presented in Fig. 4, focused on the kinematic 
paths chosen for the computation. The parameters illustrated in the figure represent the motion parameters 
according to Denavit-Hartemberg (DH) parameters (detailed in Table 1 and 2). 
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Fig. 4 – Kinematic representation for the two kinematic paths. 

Table 1 

DH parameters for the first kinematic path 

DH matrix Mechanical joint Geometric par. Actuation 
Td = I4 – – Initial displacement, identity matrix 

T1 q4 t1 Active translation along Z axis 
T2 qrf t2 Free rotation around Z axis 
T3 q4, q5 t3 Active translation along X axis 
T4 qr1 t4 Free rotation around Z axis 
T5 qr1 t5 Free rotation around Y axis 
TM – m Geometric par., translation along Z axis 
TMC – mc Geometric par., translation along X axis 
TMn – n Geometric par., translation along X axis 

Table 2 

DH parameters for the second kinematic path 

DH matrix Mechanical joint Geometric par. Actuation 
S q1, q2, q3 Xm, Ym, Zm Initial displacement 
SE – e Geometric par., translation along X axis 
S2 qr2 s2 Free rotation around Z axis 
S3 qr2 s3 Free rotation around Y axis 

SMC – mc Geometric par., translation along X axis 
SMn – n Geometric par., translation along X axis 

 
Using DH parameters, the constraint equations are defined in Eq. (8)–(9), where the left hand side 

represent the kinematic constrains in matrix form (note that the matrices are in the form of Eq. 1), and the 
right hand side are the DH parameters matrices (described in Table 1 for the kinematic path 1, and Table 2 
for the kinematic path 2). For the computation, the robot pose was chosen in a convenient way to write the 
DH parameter in a simple manner. The free rotation parameters s2, s3, and t2, t4, t5 are derived from rotation 
matrices, with the trigonometric functions (sines and cosines naturally found in the rotation matrices) written 
in parametric form using the tangent of half angle formulas cos(θ) = (1–t2

i)/(1+t2
i), sin(θ) = 2t2

i/(1+t2
i) for the 

first kinematic path and cos(θ)=(1–s2
i)/(1+s2

i), sin(θ) = 2s2
i/(1+s2

i) for the second kinematic path, where θ is 
the angle of rotation in the rotation matrices. The point S (Xm; Ym; Zm) and the values for t1 and t3 (i.e. the 
active joint parameters) are derived from the relations presented in Eq. (10) (Fig. 2) [7]. 
 

1 1 2 3 4 5d M MC MnK T T T T T T T T T= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  (8) 

2 2 3E MC MnK S S S S S S= ⋅ ⋅ ⋅ ⋅ ⋅  (9) 

1mX q= ;  2 2
3 2( )m yY D R q q= − − − ;  3mZ q= ;  1 4t q= ;  2 2

3 4 5( )t c d q q= + − − . (10) 

Following the constraint equations (Eq. 8–9) and the Study model described in Eq. (6)–(7), the Study 
parameters are computed for the two kinematic chains yielding: 
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Two ideals of varieties are generated: I generated by the 8 equations within Eq. 11 representing the 
polynomial ideal of the kinematic constraints of the kinematic path 1; I ‘generated by the 8 equations within 
Eq. 12 representing the polynomial ideal for kinematic path 2. With the ideal representation two lexdeg 
(monomial ordering to eliminate variables when an entire lexicographic base is not needed) Groebner basis 
were computed for the ideals (G for I, and G’ for I ‘) by eliminating all the free rotation parameters 
(considered unknowns) therefore depending only on the structural parameters of the robot and the values for 
the robot active joints. The computed bases contain 9 equations (all of them of degree 2) for I, and 5 
equations (4 of degree 1 and 1 of degree 2) for I ‘, the unknowns being the Study parameters. Due to the 
length of the equations of the computed bases only the first 4 equations from G’ are shown (Eq. 13). 
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To solve the forward kinematic problem using the Study model, first, a pure lexicographic Groebner basis 
( G ) is computed from the reunion of the two bases (G and G’) and by adding the normalizing condition 
(x2

0+x2
1+x2

2+x2
3=1), followed by adding the numerical values for the active joint parameters (for both bases 

G and G’). Maple software was able to compute the basis G  after the numerical values for structural 
parameters were given {e=70; m=50; mc=75; n=270} (dimensions considered in mm). An example is 
illustrated with the numerical values for active joint parameters being {Xm=250; Ym=200; Zm= 110, t1=100; 
t3=350}. After the substitution the basis G  contains a univariate polynomial in x3 of degree 8. Solving the 
basis yields 8 solutions for the Study parameters 4 of them being presented in Table 3 (the 4 other solutions 
are the presented one multiplied by –1). 
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Table 3 

Numerical values for the Study parameters 

x0 x1 x2 x3 y0 y1 y2 y3 
–0.127 0.306 0.942 0.042 157.054 72.936 1.036 –77.745 
0.086 0.759 –0.637 0.103 91.977 –62.399 –37.777 149.167 

–0.759 0.086 0.103 0.637 62.399 91.976 149.166 37.777 
0.306 0.127 –0.042 0.942 72.937 –157.054 77.745 1.037 

From the numerical solutions of the Study parameters the Euclidean displacement may be computed 
with a top perspective of the mechanism illustrated in Fig. 5. Two forward kinematics are of interest, the 
other two being a rotated version of the first two (by a value of π around the Z’ axis and the Y’ axis). 

3.3. SINGULARITIES 

A singularity of a robot may occur when two or more solutions for the forward kinematics coincide. 
The Groebner basis G computed with numerical values for the structural parameters (described in section 
3.1) contains an univariate polynomial in x3. For two or more solutions to coincide the discriminant of the 
univariate polynomial (computed by taking its resultant with its first derivative in x3) must vanish. Maple 
software returned a factorised discriminant with 8 factors representing the singularity conditions. Five factors 
are presented in Eq. (14)–(18), while the last 3 since they are too long are presented in their general form. 
The degree of Eq. (19)–(20) is 4, while the degree of Eq. (21) is 8.  

             0mY =  (14)

            1 100 0mZ t− + =  (15)

          1 200 0mZ t− − =  (16)

          150 0mZ t− − =  (17)

              2 2140 4900 0m m mX X Y+ + + =  (18)

           1 1 3( , , , , ) 0sig m m mf X Y Z t t =  (19)

             2 1 3( , , , , ) 0sig m m mf X Y Z t t =  (20)

              3 1 3( , , , , ) 0sig m m mf X Y Z t t =  (21)

 
Fig. 5 – Kinematic solutions using Study parameters. 

Equation (14) defines the first singularity when the end effector lies in the XOZ plane of the robot 
coordinate system. This singularity is easy to observe (see Fig. 4 – the computation was started in this pose) 
but it's physically impossible for the robot to reach that position due to mechanical constraints. Eq. (15)–(16) 
defines the second singularity with the end effector positioned vertically. These singularities are avoided in 
the robot control (or in the mechanical design of the Cardan joints). A kinematic representation for these two 
singularities is presented in Fig. 6. 
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Fig. 6 – Second singularity poses. Fig. 7 – Third singular pose. 

Equation (17) describes the third singularity when the end effector lies in a horizontal plane. Figure 7 
shows one singular representation that satisfies the condition, when the circle generated by the centre of qr2 
with radius 2 cm⋅ , and the circle generated from Z axis with radius t3 are tangent. Equation (18) does not have 
real solution so it is not of interest.  

The final three factors (Eq. 19–21), were evaluated using fixed values {t1 = 200; t3 = 350}, and letting 
Xm, Ym, Zm to vary in the intervals: [ ] [ ] [ ]X 0,500 ,Y 0,500 ,Z 0,500 .m m m∈ ∈ ∈  

  
Fig. 8 – Singular pose and surface described by Eq. (19). Fig. 9 – Singular pose and surface described by Eq. (20). 

The implicit surfaces are illustrated in Fig. 8 and 9 (along with CAD representations for the singular 
pose), for Eq. (19)–(20). The only real solutions found for Eq. (21) were found when it was evaluated with  
Zm = 250. This result implies that Eq. (21) is redundant with Eq. (17) (since 250 = t1 + 50).  
Figure 8 illustrates a singular pose where the end effector has the same orientation as the platform with 
constant orientation and points towards the YOZ plane – which is physically impossible). Figure 9 illustrates 
a singular pose where the end effector is along the kinematic chain 1 which should be avoided in the robot 
control algorithm). The singularity conditions computed with the Study parameters model are in active joint 
space, and can be easily implemented in the robot control (by relating the active joint parameters with Eq. 10 
– where the active joints are read from the position sensors) as safety condition in the real time control (in a 
cyclic closed loop control system). Furthermore, the singularities were computed for the mechanism that 
drives the platform with constant orientation, since the computation so far was based on introducing a point 
(S) at the start of the kinematic path 2. A path was defined starting from q1 and q2, following the kinematic 
path through R (path a in Fig. 10a) and ending in S; a second path was introduced starting from q3, following 
the kinematic path through K1 and ending in S (path b in Fig. 9a). The resulted equations are presented below 
with Eq. (22) describing the platform with constant orientation in the plane XOY. Eq. (23)–(24) describes a 
singularity where the link R is in a vertical position (the kinematic link 1 cannot reach that position due to 
mechanical constraints) as illustrated in Fig. 10b.  
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0yD =  (22) 032 =−+− qqR (23) 032 =−+ qqR  (24) 
     

  

Fig. 10 – a) Kinematic paths for the platform with constant orientation; b) singularity poses. 

4. CONCLUSIONS 

 Using Study parametrization and methods of computing polynomial equations, the mathematical model 
for the forward kinematics and singularities of BIO-PROS 1 was achieved. Despite the complexity of the 
parallel robot, Maple was able to compute the mathematical models after a simplification was made, by 
introducing a point (S) which serves as: a mid-point for the computation (eliminates the memory failure of 
Maple when it processes large equations); and a point to generalize the computation, so it can be used for 
both TRUS module and biopsy gun module. Having a parametric description of the kinematic model enables 
the bridging between the theoretical model and the robotic prototype by implementing the singularities 
polynomials as real time safety condition in the robot controller. 
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