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Abstract. In this work we consider generalized Alpha and Beta divergence measure for Markov 
chains as introduced in [2], where the weighted versions have been investigated in [3]. In continuation 
to that work, we present generalized Cressie and Read power divergence class of measures, obtain 
their limiting behavior and numerically investigate some properties of all these generalized 
divergence measures and rates. 
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1. PRELIMINARIES 

In this section we remind some definitions and results from [2] related to Alpha and Beta divergence 
measures and provide the basic results on their rates.  

Let ( )n n NX ∈  be an ergodic time-homogeneous Markov chain with finite state space 1{ … M}χ = , , .  
For this Markov chain, we consider two different probability laws. Under the first law, let 

1( )ip P X i i χ= = , ∈ ,  denote the initial distribution of the chain and 1( )ij k kp P X j X i i j χ+= = | = , , ∈ ,  

the associated transition probabilities. Let also np  denote the joint probability distribution of 

1 2( )nX X … X, , , ,  i.e., 
1 1 2 11 1( )

n nn n i i i i i ni p p …p i … i χ
−: = , , , ∈ ,p  were we denoted by 1 ni :  the n -tuple 

1( ) n
ni … i χ, , ∈ .  Similarly we define under the second law iq , ijq ,  1( )n ni :q  and n .q . Under this setting of 

finite state space Markov chains, the Alpha-Gamma measure between the two models is defined as the 
Alpha-Gamma measure between the two joint probability distributions np  and nq  (cf. [2]), and is written 
under the normalized form as  
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with ip ,  ijp ,  iq  and ijq ,  i j χ, ∈ ,  defined by  
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Similarly, the Beta-Gamma measure between the two Markov models is defined by (cf. [2])  
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where  
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The following theorems provide the corresponding divergence rates.  
THEOREM 1 (cf. [2]). Under the setting of the present section, we have 

1 1lim ( ) log ( )BG n nn
D

n
λ α

α→∞
, = − ,p q  

where ( ) lim ( )n nλ α λ α→∞:=  (assumed to exist), where ( )nλ α  is the largest positive eigenvalue of 
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with ijp  and ijq  defined in Equations (5) and (6), respectively.  
THEOREM 2 (cf. [2]). Under the setting of the present section, we have  
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with ijp  and ijq  defined in Equations (2) and (3), respectively. 

2. CRESSIE AND READ DIVERGENCE RATES FOR MARKOV CHAINS 

Let ( )A µ,Ω,  be a measurable space and pµ  and qµ  some finite measures (not necessarily 

probability measures) defined on this space, with densities p  and q  with respect to a certain measure µ.  In 
this section we are interested in the family of power divergences introduced independently by Cressie and 
Read (1984) and Liese and Vajda (1987), which is given by  

          ( ) ( )11
( 1)

CRI p q p q qα α

α α
−, = −

−
∫  d µ,  Rα ∈ ,  (7) 

where, for 0α =  and 1,  it is defined by continuity. The same prolongation by continuity will be used for all 
the divergence measures considered in the rest of the paper. 

Note that the transformation applied to Alpha and Beta divergences (as done in [2]) can also be 
applied to the Cressie and Read measure given in (7). The resulting measure is given by  

         11( ) log ( ) ( )
( 1)CRGD p q p x xq αα

α α
− , =  −  

∫  d µ (x),  (8) 

which is the normalized Liese and Vajda’s measure defined by 

             11( ) log 0 1
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RI p q p q dα α α µ α
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, − , = , ≠ , , −  
∫  (9) 
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µ
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=
∫

 in place of ( )q x . In fact, note that CR divergence can be viewed as a special 

case of AD  divergence. 

Let us now introduce the CRGD  divergence for Markov chains. This measure, introduced in Equation 
(8) in the i.i.d. setting, takes the following form in the Markov chain framework:  
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This can be written under the normalized form  
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The following result concerns the limiting behavior of CRGD .   
THEOREM 3.  Under the setting presented before, we have  
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and ijq  defined in (12). 

3. NUMERICAL APPLICATIONS 

In this section we will consider numerical examples in order to illustrate the results obtained in the 
previous section. 

Let ( )n n NX ∈  be a time-homogeneous two-state Markov chain. As previously described, for this 
Markov chain we consider two different probability laws, the first one given by a Markov transition matrix 

1 2( )i j i jp , , = ,=p  and an initial distribution ( )1 2p p p= ,  while the second one is governed by a Markov 

transition matrix 1 2( )i j i jq , , = ,=q  and an initial distribution ( )1 2q q q= .  We consider the transition matrices 
given by  

0 9 0 1 0 2 0 8
and

0 6 0 4 0 1 0 9
. . . .   

= = ,   . . . .   
p q  

while for the initial distributions we take the corresponding stationary ones, namely  

( ) ( ) ( ) ( )1 2 1 26 / 7 1 / 7 and 1 / 9 8 / 9 .p p q q= =  

First, the results of Theorem 1, concerning the divergence rate of Beta-Gamma measure, are illustrated 
in Table 1. 

Table 1 

The rate of Beta-Gamma divergence 

 n = 10 n = 15 n = 20 rate 
α = 1  BG/n  = 0.8206  BG/n  = 0.7990  BG/n  = 0.7882  0.7533 

α = 0.5 BG/n  = 1.0845 BG/n  = 1.0707 BG/n  = 1.0638  1.0403  

α = 0. 1  BG/n  = 1.1391  BG/n  = 1.1263  BG/n  = 1.1199  1.0985  

α = 0.01  BG/n  = 1.1306  BG/n  = 1.1173  BG/n  = 1.1107  1.0889  

α = 0.001  BG/n  = 1.1295 BG/n  = 1.1161 BG/n = 1.1094  1.0876  

KL KL/n =  1.1293  KL/n = 1.1160  KL/n = 1.1093 1.0892 

Second, in Table 2 we illustrate the convergence of Alpha-Gamma measure to the KL measure, as  α 
goes to 1 (cf. Remark 3). Note that the results in Tables 1 and 2 demonstrate both the convergence of the 
appropriate measure to the corresponding rate as well as the convergence to KL for any value of n (including 
the limit). 
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Divergence measures, like the ones discussed in this work, are used as indices of similarity or 
dissimilarity between populations. As a result, they can be used as a way to evaluate the distance 
(divergence) between any two populations or functions. Measures of divergence can be used in statistical 
inference for estimating purposes (Toma [9] and [10]), in the construction of test statistics for tests of fit  
(e.g. Zografos et al. [12], Huber-Carol et al. [7] and Zhang [11]) or in statistical modeling for the 
construction of model selection criteria like the Kullback-Leibler measure which has been used for the 
development of various criteria (e.g. Akaike [1] and Cavanaugh [4]). 

Table 2 

Convergence of Alpha-Gamma measure to the KL measure, as α → 1 

 n = 10 n = 15 n = 20 rate 

α = –1  AG/n  = 0.4140 AG/n  = 0.3979  AG/n  = 0.3898  0.3655 

α = 0.5 AG/n  = 1.0198 AG/n  = 0.9947 AG/n  = 0.9822  0.9447  

α = 0. 9  AG/n  = 1.1501  AG/n  = 1.1352  AG/n  = 1.1278  1.1055  

α = 0.95  AG/n  = 1.1419  AG/n  = 1.1279  AG/n  = 1.1209  1.0998  

α = 0.99  AG/n  = 1.1321 AG/n  = 1.1187 AG/n = 1.1119 1.0917  

KL KL/n =  1.1293  KL/n = 1.1160  KL/n = 1.1093 1.0892 

One of the most popular statistics is the Cressie and Read power divergence statistics (CR). The rate of 
the generalized form of this divergence for Markov sources was derived in Theorem 3. The CR family of 
statistics was originally proposed for testing the fit of observed frequencies to expected frequencies. Through 
this family of statistics, Cressie and Read succeeded in providing a unified approach to goodness-of-fit 
testing for multinomial models. The importance of the proposed statistics lies on the fact that several 
goodness-of-fit tests can be reduced to test a null hypothesis from a multinomial population and therefore a 
statistic that measures how much two distributions differ is of high importance. Several well-known test 
statistics are members of the Cressie and Read family of divergences like the Pearson’s chi-square, the 
likelihood disparity (generating the log-likelihood ratio statistic), the (twice and squared) Hellinger distance 
(Freeman and Tukey [6]), the Kullback-Leibler divergence and the Neyman modified chi-square which are 
indexed by α  =  2, 1 (by continuity), 1/2, 0 (by continuity) and –1, respectively. 

In reference to Theorem 3, some results related to CR family of measures are presented below. More 
precisely, for the Cressie and Read Generalized measure we present the convergence of the measure and 
associated rate to the appropriate KL measure and rate, as α goes to 0, 0α > , and α goes to 1, 1α <   
(cf. Table 3). 

Note that 

      
0

1lim ( ) ( , )CRG n n KL n na
D D

n→
, = ,p q q p  

while 

       
1

1lim ( ) ( , )CRG n n KL n na
D D

n→
, =p q p q  

which is clearly confirmed by the results in Table 3.  
In Table 4 we illustrate the rates of three particular cases of the Generalized Cressie and Read 

measure: Pearson's 2χ  ( 2α = ), Freeman-Tukey's 2F  ( 0 5α = . ) and Neyman 2χ  (Euclidian log-likelihood 
ratio statistic) ( 1α = − ). We have also included the special case 2 3α = − / .  Note that, based on a 
comparative study, this special value was recommended by Read and Cressie [8] (a value between the 
Pearson's chi-square and the Neyman's chi-square statistic) as a compromise candidate among the different 
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test statistics, although they noted several desirable properties of the other test statistics, including the 
Pearson's chi-square (see, e.g. Section 4.5, Section 6.7, and Appendix A11 of Read and Cressie [8]). 

Table 3 

Convergence of Cressie and Read Generalized measure/rate to the KL measure/rate,  
as 0, 0a a→ > and 1, 1a a→ <  

 n = 10 n = 15 n = 20 rate 
α = 0.1 CRG/n  = 0.7682 CRG/n  = 0.7421 CRG/n  = 0.7290 0.6899 

α = 0.01 CRG/n  = 0.7215 CRG/n  = 0.6961 CRG/n  = 0.6835 0.6455 

α = 0.001 CRG/n  = 0.7170 CRG/n  = 0.6918 CRG/n  = 0.6792 0.6413 

KL(q,p) KL/n = 0.7166 KL/n = 0.6913 KL/n = 0.6787 0.6408 

α = 0.9 CRG/n  = 1.1501 CRG/n  = 1.1352 CRG/n  = 1.1278 1.1055 

α = 0.99 CRG/n  = 1.1321 CRG/n  = 1.1187 CRG/n  = 1.1119 1.0917 

α = 0.999 CRG/n  = 1.1296 CRG/n  = 1.1162 CRG/n = 1.1096 1.0895 

KL(p,q) KL/n =  1.1293 KL/n = 1.1160 KL/n = 1.1093 1.0892 

Table 4 

The rate of the Generalized Cressie and Read measure for some important special cases: Pearson's 2 ( 2)aχ = , Freeman-Tukey's 
2( 0.5)F a = , Cressie and Read ( 2 / 3)a = − and Neyman 2( 1)aχ = −  

 n = 10 n = 15 n = 20 rate 
α = 2 CRG/n  = 0.7253  CRG/n  = 0.7171  CRG/n  = 0.7130  0.7007  
α = 0.5 CRG/n  = 1.0198  CRG/n  = 0.9947 CRG/n  = 0.9822  0.9447  

α = –2/3  CRG/n  = 0.4839  CRG/n  = 0.4652  CRG/n = 0.4558 0.4277  
α = –1 KL/n =  0.4140 KL/n = 0.3979  KL/n = 0.3898 0.3655 

In Fig. 1 the Generalized Cressie and Read divergence rate is illustrated as a function of α  for the two 
probability laws of the Markov chain considered at the beginning of this section. We also represented the 
value of 1

CRGn D  for several values of n. Notice the fast convergence of 1
CRGn D  to the rate according to 

Theorem 3. Notice further that, even for small values of n, 1
CRGn D  gives a good approximation of the rate.  

In reference to the special value of 2 3α = − / , we observe in Fig. 1 that this is not the value of the index α  
that discriminates the most between the two Markov chains. For this particular example the value that 
maximizes the divergence rate is 88.0* =α . Although *α  may be of limiting significance if the two sources 
are well separated, it will be of great importance in case the two sources are close to each other. Indeed, 
consider the following example, for which the divergence rate will be expected to be close to 0 . Let a time-
homogeneous two-state Markov chain ( )n n NX ∈  evolve under two different probability laws than those of the 

beginning of this section, the first one given by a Markov transition matrix 1 2( )i j i jp , , = ,=p  and an initial 

distribution ( )1 2p p p= ,  while the second one is governed by a Markov transition matrix 1 2( )i j i jq , , = ,=q  

and an initial distribution ( )1 2q q q= .  We consider the transition matrices given by  

0 4 0 6 0 6 0 4
and

0 7 0 3 0 4 0 6
. . . .   

= = ,   . . . .   
p q  

while for the initial distributions we take the corresponding stationary ones.  
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Fig. 1 – The convergence of 1

CRGn D  w.r.t. n. 

Figure 2 presents the Generalized Cressie and Read divergence as a function of α  for this example. 
Note that Figure 2 confirms the closeness of the sources but at the same time provides the value *α  of the 
index for which the rate is maximized ( 57.1* −=α ). In conclusion, for discriminatory purposes and 
consequently for statistical inference (i.e., goodness of fit tests, model selection, etc.) we recommend the use 
of the divergence rate with the index taken to be equal to the value *α . Note that the same recommendation 
applies not only to the rate but also to the divergence itself.  

Let us now consider two additional examples of two different probability laws governing a Markov 
chain. First, we are interested in a two-state Markov chain and we set the Markov transition matrices p and q  

0 8 0 2 0 7 0 3
and

0 9 0 1 0 2 0 8
. . . .   

= = ,   . . . .   
p q  

while the initial distribution ( )1 2p p p=  and ( )1 2q q q=  are taken to be the associated stationary ones. 

In Fig. 3 we present both the Generalized Cressie and Read divergence rate computed for ( )n np q,  and 
also for ( )n nq p,  as a function of α.   

 
Fig. 2 – The Generalized Cressie and Read divergence rate for the second example. 
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Fig. 3 – Reflection property of the GCR divergence rate for the third example. 

Second, we consider another example of two laws governing now a three-state Markov chain. Let p 
and q be two Markov transition matrices given by  

0 7 0 2 0 1 0 9 0 05 0 05
0 4 0 5 0 1 and 0 6 0 2 0 2
0 4 0 1 0 5 0 1 0 2 0 7

. . . . . .   
   = . . . = . . . ,   
   . . . . . .   

p q  

while the initial distribution ( )1 2p p p=  and ( )1 2q q q=  are the associated stationary ones.  

As for the previous example, in Fig. 4 we present both the Generalized Cressie and Read divergence 
rate computed for ( )n np q,  and also for ( )n nq p,  as a function of α.   

Note that in both Figs. 3 and 4 there is a symmetry between the two graphs. In fact this phenomenon is 
due to a reflection property of the GCR divergence. More precisely, let us denote by ( )CRG n nD p qα; ,  the GCR 

divergence evaluated at α.  Then, one can easily verify that 1( ) ( )CRG n n CRG n nD p q D q pα α; ; −, = , .  Obviously, 

due to Theorem 3 this property holds true also for the divergence rate. For this reason, in Figures 3 and 4 we 
have a reflection wrt the line 0 5x = . .   

      
Fig. 4 – Reflection property of the GCR divergence rate for the three-state example. 
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