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Abstract. Complex flow systems such as the vascular and respiratory trees are made of large and 
small ducts connected together. While the Hess–Murray law is supported by a number of empirical 
studies, it will not always hold. To account to this, extensions of this law were put forth by several 
authors. The numerical study presented in this paper explores the performance of branching systems 
of ducts in terms of total fluid flow resistance and distribution of shear stresses for both laminar 
Newtonian and non-Newtonian fluids. Deviations from and extensions to Hess–Murray law are 
comprehensively identified and discussed. New insights into the dynamics within the assembly of 
ducts are presented. 
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1. INTRODUCTION 

Tree-shaped flow networks have been the subject of numerous investigations owing to its importance 
in understanding the behaviour of natural systems, and for the design of manmade systems [1–4]. Blood 
vessels supply cellular tissues with cells, nutrients and oxygen, and remove waste products of cellular 
activity, through branching vascular networks [5]. The respiratory tree supplies oxygen necessary for tissue 
metabolism and removes the produced carbon dioxide [4, 6]. Tissues, which make up the respiratory zone of 
this tree, support a very large gas exchange surface between air and blood that is ventilated and perfused with 
blood. For fluid transport systems the best flow configuration, that connects a point-to-volume  and vice-
versa is a tree network with an arrangement of increasingly smaller descending vessels [1–4, 7]. Assuming a 
minimum energy expenditure for blood flow and blood volume, Murray [8, 9] states that the optimal branching is 
achieved when the cube of the diameter of a parent vessel equals the sum of the cubes of the diameters of the 
daughters (Hess-Murray law). This optimum way to connect large and small vessels together is only valid 
long as the walls of vessels are impermeable, and the flow is laminar, Newtonian, steady, incompressible and 
fully developed [5, 6]. This 2-1/3 rule is able to describe network of veins and arteries, the airways of 
conducting zone of the respiratory tract, etc., but the smallest vessels deviate and airways of respiratory zone 
of the lungs, deviate from this rule. There is evidence that turbulent flows require an optimally 2-3/7 rule [10, 
11]. However, fluid flow in living organisms is essentially laminar and evidences suggest that the exposure 
to turbulent flows might pose some health risk [6]. 

Blood includes erythrocytes (red blood cells), leukocytes (white blood cells) and thrombocytes 
(platelets) in an aqueous solution (plasma). Its rheology is largely influenced by the behaviour of the 
erythrocytes, mainly due to high concentration [5, 12]. Blood vessels exhibit diameters from 3 μm to 3 cm, 
and studies considering this effect on bifurcating design would be needed. In larger vessels, the flow is 
pulsatile due to pumping characteristics induced by the heart. Experimental studies suggest that if vessels 
experiences high shear rates (higher than 100 s-1), it is reasonable to consider blood flow as a Newtonian 
fluid [5, 12]. In small vessels distant from the heart, the flow may be approached as steady. At shear rates 
lower than 100 s-1, blood displays shear-thinning behaviour since its viscosity decreases with increasing 
shear rate. A power-law fluid model is applied by Miguel [5] and Revellin et al. [13] to derive expressions 
for these vessels.  
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It is observed a significant decrease of apparent blood viscosity in ducts with diameters in the range of 
50–500 μm (Fåhræus-Lindqvist effect) [12]. The reason behind this effect is the formation of a cell-free layer 
near the wall of the duct, which has a reduced local viscosity (the core of the duct has a higher local 
viscosity). Miguel [12] investigated how the optimal branching of parent to daughter vessels is affected by 
occurrence of Fåhræus-Lindqvist effect. 

Although first derived from the principle of minimum work, Hess-Murray law can be also obtained in 
the light of the constructal law [1–3]. For minimum resistance under global size constraints of a Newtonian 
fluid under laminar flow, Bejan et al. [11] showed that both diameter and length of the offspring vessels can 
be predicted conform a 2-1/3 rule. Other studies used the constructal law to propose the rules of design for 
flows of non-Newtonian fluids through bifurcating vessels, and for porous-walled vessels were also 
predicted [5, 6]. These rules were reported to depend on fluid behaviour index and on wall permeability. It is 
important to note that, the rules of design obtained based both on principle of minimum work and on 
constructal law are based on one-dimensional (1D) and two-dimensional (2D) analytical approaches, and 
involve many assumptions and simplifications listed in [14]. This study aims to obtain new insights into the 
dynamics of Newtonian and non-Newtonian flows in bifurcating vessels. A three-dimensional (3D) 
numerical analysis is performed to study fluid flow through T-shaped structures. The results are compared 
with analytical expressions presented by Murray [8, 9], Bejan et al. [11], Miguel [5] and Revellin et al. [13]. 
We chart the similitudes and differences, to provide a comprehensive view of the flow process. 

2. MATHEMATICAL FORMULATION 

2.1. Constructal law of design and extremum principles of entropy production 

The emergence of configuration, defined by the constructal law, requires that the entropy changes, 
rather than staying the same [1–4, 15]. Consider that the fluid flow, Q, raised to the power of n is 
proportional to the pressure difference, ΔP. The rate of entropy generated, Sg, at absolute temperature, T, is 
given by 
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Here n is the power-law index (n < 1 fluid with shear-thinning properties, n > 1 fluid with shear-thickening 
properties, n = 1 Newtonian fluid). As Qn = R-1ΔP, in terms of flow resistance R, Eq. (1) may be rewritten as 
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Minimum R for a specified potential (ΔP = constant) means maximizing of the entropy generation rate, 
but minimum R for a constant current (Q = constant), means minimizing the entropy generation rate.  

2.2. Problem description 

Consider a symmetric T-shaped flow system composed by cylindrical ducts designed according to 

D2

D1

= aD ,   and   L2

L1

= aL , (3)

where D is the diameter, L is the length, the subscripts 1 and 2 mean parent and daughter ducts, and the scale 
factors aD and aL may vary between 0.1 to 1.0. The geometric constraints are [11] 

 ( )2 2
1 1 2 22 ,
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which means the total volume occupied by the ducts and the total space occupied by the planar assembly of 
ducts are fixed.  
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2.3. Governing equations 

Consider a laminar, steady and incompressible flow. Continuity and the momentum equations are 

 ∇
r 
v = 0 , (5)

( ) ( ) ( )v v Pϕ ∇ = ∇ − ∇τ
G G G . (6)

Here v is the velocity, φ is the density, τ is stress and  

τ ij = μZij , (7)

μ = kγn −1 exp
T0

T
, (8)

where Z is the rate of deformation tensor, μ is the viscosity, T0 is the reference temperature, k is the 
consistency index, and n is the power-law index. The Reynolds number for power-law fluid flows is [15]  
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where ReDn is the generalized Metzner-Reed Reynolds number.  

2.4. Numerical procedure 

The governing Eqs. 5–7 are solved using a finite volume method and employing the segregated method 
with implicit formulation. A constant mass flow rate and an outflow boundary condition are used at the inlet 
and at the outlet, respectively. No-slip boundary conditions are applied at walls. Relaxation factors for 
momentum and pressure were set to 0.70 and 0.30, respectively. The residual values of the governing Eqs. 5 
and 6 were all set to 10-4 and 10-6, respectively. Details can be found in [14]. 

3. RESULTS AND CONCLUSIONS 

Here we present a comprehensive set of results for laminar flow (ReDn=100) and for power-law indices 
n < 1 (shear-thinning fluid) and n = 1 (Newtonian fluid). The numerical study was carried out using the 
following fluids with the following properties: n = 0.66: ρ = 1041 kg/m3 and k = 0.2 Pa·sn (tomato paste 5.8% 
solid); n = 0.776: ρ = 1060 kg/m3 and k = 1.47×10-4 Pa·sn (blood); n = 1: ρ = 1.1405 kg/m3 and μ = 1.9043×10-5 
Pa·s (air), ρ = 998 kg/m3, μ = 8.91×10–4 Pa·s (water), and ρ = 1259.9 kg/m3, μ = 7.99×10-1 Pa·s (glycerine). 

 
Fig. 1 – Velocity contours (middle plane) in a 3D T-structure (D2/D1 = L2/L1= 2-1/3): air, water and glycerine, respectively. 
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Fig. 2 – Shear stress contours (top plane) in a 3D T-structure (D2/D1 = L2/L1= 2-1/3): air, water and glycerine, respectively. 

  
Fig. 3 – Velocity contours (middle plane) in a 3D T-structure (D2/D1 = L2/L1= 2-1/3): n = 0.66 (tomato paste 5.8% solid), 

n = 0.776 (blood), respectively. 
 

  

 
Fig. 4 – Shear stress contours (top plane) in a 3D T-structure (D2/D1 = L2/L1= 2-1/3): n = 0.66 (tomato paste 5.8% solid), 

n = 0.776 (blood), respectively. 

Figures 1 and 2 show the velocity and shear stress contours for the Newtonian fluids. Although air, 
water and glycerine have different properties, the velocity and the shear stress profiles are similar. It is 
interesting to note that, although the geometry of the bifurcation is symmetric, velocity and shear stress are 
slightly asymmetric. This agrees with the findings of Andrade Jr et al. [16], and Pepe et al. [14] that also 
reported asymmetric velocities profiles. It has also been found a dependence of velocity asymmetric on 
Reynolds number [14]. As for Newtonian fluids, shear-thinning flows also show asymmetric velocity and 
shear stress distributions (Figs. 3 and 4). This means that these asymmetric distributions in symmetric geometries 
are common fingerprints to both shear-thinning and Newtonian fluids.     

 
Fig. 5 – Dimensionless total flow resistance, R*, of a T-flow structure (n = 1): air, water and glycerine, respectively. 
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Fig. 6 – Dimensionless total flow resistance, R*, of a T-flow structure: n = 0.66 (tomato paste 5.8% solid), n = 0.776 (blood), respectively. 

According to Eq. 2, minimizing the entropy generation rate means minimizing the flow resistance 
under a constant fluid flow. Figures 5 and 6 show the total dimensionless flow resistance, R*, for flows of 
Newtonian and shear-thinning fluids through T-shaped structures. The dimensionless resistance R* is defined 
by the ratio of total flow resistance to the total flow resistance in a T-shaped assembly of ducts designed 
according to D2/D1 = L2/L1=2-1/3. The scale factors aD and aL that allows a T-configuration with a minimum 
system-resistance are obtained and compared with those predicted analytically by [5] and [13] (Table 1). For 
Newtonian fluids the optimal aD and aL is independent of fluid properties. This may be explained by the 
similar velocity and shear stress contours depicted in Figs. 1 and 2. For shear-thinning fluid, the optimal 
scale factors aD and aL depend on power-law index n. These numerical results agree very well with the 
prediction of analytical models presented by [5, 8, 11, 13]. In an attempt to provide additional information, 
we also calculated the total flow resistance for each optimal T-shaped configuration (Table 2). 

Table 1 

Optimal branching scale factor for minimum flow resistance of a T-shaped assembly of ducts 

Optimal assembly of ducts based
on Figs. 5 and 6 

Optimal assembly of ducts based on the 
analytical model of references [5, 8, 11, 13] power-law index 

n aD aL aD aL 
0.660 (tomato concentrate ) 0.76 0.87 0.76 0.87 
0.776 (Blood) 0.77 0.83 0.77 0.84 

1.000
(air 

 water  
glycerine) 

0.79 0.79 0.79 0.79 

Table 2 

Flow resistance in each duct of an optimal T-shaped assembly of ducts 

Power-law index n 
0.660 (tomato paste) 0.776 (blood) 1.000 (water) Total Flow Resistance 

(Pa.sn/kgn) 
aD = 0.76, aL = 0.87 aD = 0.77, aL = 0.83 aD = 0.79, aL = 0.79 

Parent duct 2.36E-01 4.65E-04 4.26E-04 
Daughter duct 1 7.25E-02 1.48E-04 1.62E-04 
Daughter duct 2 7.35E-02 1.49E-04 1.63E-04 

Junction parent-daughter ducts 4.70E-02 6.86E-05 1.72E-04 
Total 3.32E-01 6.48E-04 6.75E-04 

Table 2 shows that the flow resistance at parent duct is higher than in any other duct. It is remarkable to 
notice that the flow resistance in each daughter duct is not the same. This may be a direct consequence of the 
heterogeneous velocity and shear stress distributions shown at Figs. 1 to 4. It is remarkable to notice that the 
flow resistance at the junction of parent-daughter ducts is of same order of magnitude than the flow 
resistance at each daughter duct, exception for n = 0.776. This means that the flow resistance at the junction 
between parent and daughter ducts is not small enough to be negligible. In fact, Wechsatol et al. [17] 
suggested that the junction losses have a sizeable effect on optimized geometry when the svelteness factor 
defined by the ratio of the external to the internal length scales is lower than the square root of 10 (~3.2). In 
our study, the svelteness factor of T-configurations varies between 2.108 and 2.236. Notice that the 



 Vinicius R. PEPE, Luiz A. O. ROCHA, Antonio F. MIGUEL 6 248 

analytical models in the literature (see for example [6–11, 13]) assume that the flow resistance at parent-
daughter junction is negligible, but even so they predict very well the optimal scale factor aD and aL.. 

To obtain further insights into the results depicted in Table 2, it is quite intuitive to consider the fluid 
flow like the flow of electric charges (electric current). For any system (fluid or electric charges), the total 
flowrate must be the same (principle of continuity). In our flow system, we assume that parent duct and the 
duct that connects parent-daughter ducts are resistors connected in series, and the daughter ducts are resistors 
connected in parallel. The total equivalent resistance of the resistors is 

Rt ~ Rp + Rc + Rd1Rd 2

Rd1 + Rd 2

, (10)

where R is the resistance and the subscripts t, p, c, d1 and d2 mean total equivalent, parent duct, junction 
parent-daughter ducts, d1 daughter duct 1 and d2 daughter duct 2, respectively. Eq. 10 reproduces rather well 
the numerical results depicted in Table 2, which means that is a good assumption to consider the parent duct 
and the junction of parent-daughter ducts as flow resistances connected in series.  It is also important to note 
that the contribution of the flow resistances of daughter ducts to Rt is less than the smallest of the daughter 
resistances.  
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