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Abstract. In this paper we propose the general Riemann-Liouville and Caputo-Liouville fractional 
derivatives with nonsingular power-law kernels, for the first time to our knowledge. New general laws 
of deformation within the framework of the general fractional derivatives are considered in detail. The 
creep and relaxation behaviors of the general fractional-order Voigt and Maxwell models are also 
obtained with the use of the Laplace transform. We provide the mathematical tools to describe the 
rheological phenomena of real materials with the memory effect. 
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1. INTRODUCTION 

Fractional derivatives (FDs) with singular power-law kernels in the Riemann-Liouville and Caputo 
senses have been of increasing interest for scientists and engineers to develop the necessary mathematical 
models in diverse research areas such as control theory [1], mechanics [2], economy [3], finance [4], biology 
[5] and many others (see [6–13] and the cited references therein).  

From the point of view of mathematics and physics, the new prospective of the applications of the FDs 
in linear viscoelasticity has been investigated in [14, 15]. For example, an idea for the fractional-order 
relaxation curve of the fluid was firstly considered in [16].  

With the use of the Nutting’s observation [17], the laws of deformation within the Riemann-Liouville 
[18], Liouville-Caputo [19–23], Caputo-Fabrizio [24], local [25] and others (see [26] and the cited references 
therein) were reported. The investigations of the hereditary elastic rheological model with the use of the 
Volterra integral equation were presented in [14, 15, 20–27]. The Maxwell and Voigt models within the 
different operators were proposed in [28–34].  

Nowadays, there exists a new unsolved problem derived from the Nutting equation [17]. Motivated by 
the above-reported ideas, the main aim of this paper is to propose the general fractional derivatives (GFDs) 
with nonsingular power-law kernels to handle the general fractional-order Maxwell and Voigt models for the 
real materials with the nonsingular power-law phenomena.  

This paper is organized as follows. In Section 2, we propose the Liouville-Caputo and Riemann-
Liouville general fractional derivatives with non-singular power-law kernels. In Section 3, the rheological 
models involving general fractional derivatives with non-singular power-law kernels are considered. Finally, 
the conclusion is drawn in Section 4.  

2. GFDS WITH NONSINGLAR POWER-LAW KERNELS 

In this section, with the help of the concepts of the Liouville-Caputo and Riemann-Liouville FDs with 
the singular power-law kernel and their generalizations [5–11, 35–36], we start with the definitions of the 
Liouville-Caputo and Riemann-Liouville GFDs in a special function.    
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The Liouville-Caputo and Riemann-Liouville GFDs in a kernel function are defined as [35–36]: 
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locL +Θ ∈ , and ( )θΞ  is the kernel function.  

When the nonsingular power-law kernel in Eq. (1) is given as: 
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the Riemann-Liouville type GFD of the function ( )θΘ  of order ( )0 1ν< <  is defined by 
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and the Liouville-Caputo type GFD of the function ( )θΘ  of order ( )0 1ν< <  is defined by 
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The relationship between Eqs. (4) and (5) is given as: 
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Similarly, we define, corresponding to expressions of Eqs. (5) and (6), the following:  
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where 1m mν− < < . 
The Laplace transforms of Eqs. (4) and (5) are as follows: 
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where the Laplace transform is defined by [27]: 
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The general fractional integral of the function ( )τΘ  of order ( )0 1ν< <  is defined as:   
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We call the new results as the generalized fractional calculus (GFC) with nonsingular power-law 
kernels.   
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3. RHEOLOGICAL MODELS INVOLVING GDFS 
WITH NONSINGULAR POWER-LAW KERNELS  

In this section, we discuss the spring-dashpot elements, the creep and relaxation representations, the 
general fractional-order Voigt model (GFOVM), and the general fractional-order Maxwell model (GFOMM). 

According to the Nutting equation in real materials [17], there is a power-law stress relaxation: 

( ) ( )ν
ν νσ τ τ ε τ= Κ , (13) 

where Κ  is a model parameters, ( )νε τ  is the strain, νσ  is the stress, and τ  is the time.  
With the use of Eqs. (4) and (5), the general fractional-order dashpot elements (GFODEs) follows the 

general fractional-order Newtonian law, whose creeping equations (CEs) are as follows: 
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where Κ  is the viscosity.  
The spring element (SE) follows the Hooke’s law, whose CE is given as:   

( ) ( )ν νσ τ ε τ= Η , (16)

where Η  is the Young’s modulus of the material.  
If ( )0νσ  and ( )0αε  represent the initial stress and strain conditions, respectively, then the creep 

compliance (CC) and relaxation modulus (RM) functions are given by:  
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respectively. 
Due to the Boltzmann superposition principle and causal histories for 0τ +∈  (see [14]), the creep and 

relaxation representations are as follows.  
With the aid of Eq. (14), the CEs for creep and relaxation representations can be given though the 

hereditary integral equations of the Volterra type:    
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Similarly, making use of Eq. (15), the CEs for the creep and relaxation representations can be applied 

by the consideration of  the hereditary integral equations of the Volterra type:     
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3.1. The GFOVMs with nonsingular power-law kernels 

If the GFOVM consists of a HE and a GFODE in parallel [14, 25], then we have, by using Eqs. (14), 
(15), and (16), that  
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respectively. 
We now consider the creep behaviors of the GFOVMs as follows.  
The system of the material is subjected to  
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where ( )ϑ τ  represents the unit step function [14, 24] . 

From Eqs. (22) and (24), the creeping differential equation (CDE) for the GFOVM is given by:   
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where the Mittag-Leffler function is defined as [6–8, 14]:  
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In a similar way, from Eqs. (23) and (24), the CDE for the GFOVM is presented as:   
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where the two-parameter Mittag-Leffler function is defined as [6, 14]: 
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Figure 1 illustrates the creep responses of the GFOVMs via the nonsingular power-law kernel for the 
parameter 0.8ν = .  

We present the relaxation behaviors of the GFOVMs as follows.   
The system of the material is subjected to  

( ) ( ) ( )0ν νε τ ε ϑ τ= . (31) 
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Fig. 1 – The creep responses of the GFOVMs for the parameter 0.8ν = . 

From Eqs. (22) and (31), the relaxation differential equation (RDE) for the GFOVM is given as: 
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which leads to the RM function: 
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In a similar manner, due to Eqs. (23) and (31), the RDE for the GFOVM can be read as:   

( ) ( )0ν νσ τ ε= Η , (34)

which yields the RM function:  

( )Gν τ = Η . (35)

Figure 2 shows the relaxation responses of the GFOVMs via the nonsingular power-law kernel for the 
parameter 0.8ν = .  

 
Fig. 2 – The relaxation responses of the GFOVMs for the parameter 0.8ν = . 
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3.2. The GFOMMs with nonsingular power-law kernels 

If the GFOMM consists of a HE and a GFODE in series [14, 25], then we have, by using Eqs.(14), (15), 
and (16), that 
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respectively. 
We consider the creep behaviors of the GFOMMs as follows. 
With the aid of Eqs. (24) and (36), the CDE for the GFOMM is given by  
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From Eqs. (24) and (37), the CDE for the GFOMM is represented as:  
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Figure 3 displays the creep responses of the GFOMMs via the nonsingular power-law kernel for the 
parameter 0.8ν = .  

 
Fig. 3 – The creep responses of the GFOMMs for the parameter 0.8ν = . 

Let us consider the relaxation behaviors of the GFOMMs as follows. In view of Eqs. (39) and (44), the 
RDE for the GFOMM can be read as:  
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which leads to the RM function: 
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From Eqs. (39) and (45), the RDE is as follows: 
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Figure 4 demonstrates the relaxation responses of the GFOMMs via the nonsingular power-law kernel 
for the parameter 0.8ν = .  

 
Fig. 4 – The relaxation responses of the GFOMMs for the parameter 0.8ν = . 

4. CONCLUSION 

In the present work, we proposed the nonlocal Liouville-Caputo and Riemann-Liouville GFDs with 
nonsingular power-law kernels to model the rheological phenomena in real materials with memory effects, 
for the first time to our knowledge. The solutions for the creep and relaxation differential equations of the 
GFOVMs and GFOMMs were also discussed with the aid of the Laplace transform. The GFC may open a 
new prospective for handling various nonsingular power-law phenomena in science and engineering.   
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