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Abstract. In this work we consider weighted versions of the generalizations of Alpha divergence 
measure (Chernoff [8], Amari and Nagaoka [1]) and Beta divergence measures (Basu et al. [4]) for 
Markov chains and investigate their limiting behavior. This is a continuation of the developments 
presented in [2], applying the notion of weighted divergence measure (Beliş and Guiaşu [5], Guiaşu 
[11], Kapur [12]). This work is continued in [3], where we present generalized Cressie and Read power 
divergence class of measures and numerically investigate some properties of all these generalized 
divergence measures and rates.  
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1. PRELIMINARIES 

In this work we focus on some generalizations of Alpha divergence measure (Chernoff [8], Amari and 
Nagaoka [1]) and Beta divergence measures (Basu et al. [4]) and rates for Markov chains presented in [2]. 
For these divergences and rates we consider the associated weighted versions, following the concepts 
introduced by Beliş and Guiaşu [5], Guiaşu [11].  

As the results on information measures consider only the probability mass function or the probability 
density function of a random variable without taking into account its value, Beliş and Guiaşu [5] highlighted 
the importance of integrating the quantitative, objective and probabilistic concepts of information with the 
qualitative, subjective and non-stochastic concept of utility. By considering the two basic concepts of 
objective probability and subjective utility, they introduced the concept of weighted entropy and thus 
constructed a shift-dependent information measure with properties similar to those of the Shannon entropy. 
Afterward Guiaşu [11] characterized axiomatically the weighted entropy measure. Di Crescenzo and 
Longobardi [9] introduced the concept of weighted residual entropy and weighted past entropy. Many other 
researchers investigated different aspects and generalizations of weighted entropies and divergences; among 
them, we can cite Bhullar et al. [6], Casquilho [7], Dial and Taneja [10], Kapur [12], Sharma et al. [13], 
Śmieja [14], Suhov et al. [15, 16], Taneja [17], Taneja and Tuteja [18, 19].  

The paper is organized as follows. In the rest of this section we recall from [2] the definitions of 
generalized Alpha and Beta divergence measures; then, in Section 2 the corresponding weighted generalized 
divergence measures are presented and the associated rates are obtained. 

Let (Xn)n∊N  be an ergodic time-homogeneous Markov chain with finite state space χ  = {1, …, M} For 
this Markov chain, we consider two different probability laws. Under the first law, let pi = P(X1 = i), i ∊ χ  
denote the initial distribution of the chain and pij = P (Xk+1 = j | Xk = i ), i, j ∊ χ  the associated transition 
probabilities. Let also pn denote the joint probability distribution of (X1, X2, …, Xn), i.e., 
pn(i1:n) = pi1pi1i2… pin–1in, i1,…, in ∊ χ , were we denoted by i1:n the n-tuple (i1,…, in) ∊ χn . Similarly we define 
under the second law qi, qij, qn(i1:n) and qn. Under this setting of finite state space Markov chains, the Alpha-
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Gamma measure between the two models is defined as the Alpha-Gamma measure between the two joint 
probability distributions pn and qn (cf. [2]), and is written under the normalized form as  
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Similarly, the Beta-Gamma measure between the two Markov models is defined by (cf. [2])  
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2. WEIGHTED ALPHA AND BETA DIVERGENCE RATES 
FOR MARKOV CHAINS 

In this section we first recall the notions of weighted entropies and divergence measures and then 
introduce new concepts of weighted Alpha and Beta divergences. Then these measures will be defined for 
finite Markov chains and the corresponding rates will be obtained.  

As mentioned in the Introduction, Beliş and Guiaşu [5] introduced the concept of weighted entropy and 
Guiaşu [11] characterized it axiomatically. Let 1( )np … p= , ,p  be a finite probability distribution 
corresponding to n possible states or outcomes and 1( )nw … w= , , ,w  be a vector of weights associated with 
these states, wi ≥ 0, i = 1,…, n.  

Definition 1 (cf. [11]).  The weighted Shannon entropy measure is defined by  
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When considering an absolutely continuous probability measure pμ  with a density p  with respect to a 
certain measure μ  and a weight function w  assumed to be measurable and positive, then the weighted 
Shannon entropy measure is defined by  

 ( ) ( ) ( ) log( ( )) ( )SI p w w x p x p x d xμ; = − .∫  (8) 

Let us consider 1( )np … p= , ,p  and 1( )nq … q= , ,q  two finite probability distributions corresponding to  n 
possible states and let 1( )nw … w= , ,w  be a vector of weights associated with these states, 

,,...,1,0 niwi =≥ with 0iw ≠  for some i. It is clear that for real applications, in fact 0iw >  for all i , which 
will be assumed all along this paper.  
Note that the weighted Shannon divergence measure (relative entropy) between p and q can be defined as 
follows.  

Definition 2 (cf. [18]). The weighted Shannon divergence measure between p and q is given by  
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Kapur [12] defined axiomatically the weighted directed divergence concept. Let us consider 1( )np … p= , ,p  
and 1( )nq … q= , ,q  two finite probability distributions corresponding to n possible states and let 

1( )nw … w= , ,w  be a vector of weights associated with these states, .,...,1,0 niwi =≥  

Definition 3 (cf. [12]). A measure D(p, q, w) is said to be an appropriate measure of weighted directed 
divergence if the following axioms are fulfilled:  

1. It is a continuous function of 1( )np … p, , ,  1( )nq … q, ,  and 1( )nw … w, , .   
2. It is permutationally symmetric, i.e. it does not change when the triplets 

1 1 1( )p q w, , , 2 2 2( )p q w …, , , , ( )n n np q w, ,  are permuted among themselves.  
3. It is always non-negative and vanishes when i ip q=  for all 1i … n= , , .   
4. It is a convex function of 1( )np … p, , ,  which has its minimum value zero when  

i ip q=  for all 1i … n= , , .   
5. It reduces to a positive multiple of an ordinary measure of weighted directed  

divergence when all the weights are equal.  

Note that the weighted Shannon divergence introduced in Definition 2 does not verify Condition 3 of 
the Kapur’s definition of a weighted directed divergence. For this reason, Kapur [12] proposed another 
weighted Shannon divergence measure which satisfies all the above set of axioms of a weighted directed 
divergence.  

Definition 4 (cf. [12]). The weighted Shannon directed divergence measure corresponding to the 
Kullback-Leibler measure is given by  
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Note that the weighted Shannon directed divergence measure given in the above definition verifies 
Condition 3 of the Kapur's definition of a weighted directed divergence; indeed, one has to factorize by ip  

the factor ( )log i

i
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− +  in (10) and then to study the sign of the function ( ) log( ) 1f t t t:= − + .   
We will introduce now the concepts of weighted Alpha and Beta divergence measures, as well as the 
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weighted Alpha-Gamma and Beta-Gamma divergence measures.  
Let us consider two absolutely continuous probability measures pμ  and qμ  with corresponding 

densities p  and q  with respect to a certain measure μ  and a weight function w  assumed to be measurable 
and positive. 

Definition 5.  The weighted Alpha and Beta divergence measures are given by  
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Note that  
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Note also that  
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Transforming the weighted Alpha divergence ( )w
AD p q w, ;  given in Definition 1 (as done in [2] for 

the Alpha divergence), we obtain the weighted Alpha-Gamma divergence measure  
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Similarly, transforming the weighted Beta divergence ( )w
BD p q w, ;  given in Definition 1, we obtain 

the weighted Beta-Gamma divergence measure given by  
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Note that p  and q,  respectively p̂  and q̂,  can be seen as the densities (or mass functions in the 
discrete case) of corresponding measures pμ  and qμ ,  respectively p̂μ  and q̂μ ,  with respect to a certain 
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measure μ.  Thus the Alpha and Beta divergence measures ( )AD p q,  and ( )ˆ ˆBD p q,  that appear in (1) and 
(2), as well as the Alpha-Gamma and Beta-Gamma divergence measures ( )AGD p q,  and ˆ ˆ( )BGD p q,  that 
appear in (13) and (14) are well defined.  

Let us now focus on weighted divergence measures for Markov chains. We place ourselves in the same 
framework as in the previous section: (Xn)n ∊ N is an ergodic time-homogeneous Markov chain with finite 
state space χ = {1,…, M} and we consider two different probability laws for this chain, pi, pij, pn(i1:n), pn are 
the corresponding probabilities under the first law, while qi, qij, qn(i1:n), qn are the same quantities under the 
second law. Let us also consider W(n) = {w(i1, …, in) | (i1,…,in) ∊ χn}, n ∊ N*, be a set of weights associated 
with the states χn, w(i1, …, in) > 0; as previously, we denote w(i1, …, in) by w(i1:n) Let us consider 
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Under these notations, taking into account the weighted Alpha-Gamma divergence measure introduced 
in (13) and the weighted Beta-Gamma divergence measure introduced in (14), we define the weighted 
Alpha-Gamma and Beta-Gamma divergence measures for finite Markov models.  

Definition 6.   
1. The weighted Alpha-Gamma measure between the two Markov models is defined as the weighted 

Alpha-Gamma measure between the two joint probability distributions np  and n ,q  that is  
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2. The weighted Beta-Gamma measure between the two Markov models is defined as the weighted 
Beta-Gamma measure between the two joint probability distributions np  and n ,q  that is  
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We will consider two particular cases of weights, that could be of interest in practice. The first one is  
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where 1( )Mw … w= , ,w  is a vector of weights associated with the states χ = {1,…, M}, wi  > 0, i = 1,…,M.  
Here iw  is considered as a weight associated to the state i , and relation (17) means that the weights are 
independent. The second case considered is  
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is considered as a weight associated to the couple of state ( )i j,  and relation (18) means that the weights 
have a dependence of a Markov type.  

PROPOSITION 1.  
1. Under the first particular case of weights given in (7):  
• The weighted Alpha-Gamma measure between the two Markov models can be written under the 
normalized form  
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• The weighted Beta-Gamma measure between the two Markov models can be written under the 
normalized form  
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2. Under the second particular case of weights given in (18):  
• The weighted Alpha-Gamma measure between the two Markov models can be written under the 
normalized form  
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• The weighted Beta-Gamma measure between the two Markov models can be written under the 
normalized form  
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The following result gives the divergence rates of weighted Alpha-Gamma and Beta-Gamma measures, 
with the weights of the types given in (17) and (18). The proof is similar as the proof of Theorems 1 and 2 
from [2] and will not be provided here.  

THEOREM 1. Under the setting of the present section, we have:  
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if considering the second type of weights given in (18).  

(b) 

1 1lim ( ) log ( )w
BG n nn

D
n

λ α
α→∞

, ; = − ,p q w
 

where ( ) lim ( )n nλ α λ α→∞:=  (assumed to exist), where ( )nλ α  is the largest positive eigenvalue of 
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( ) ( ( ))ˆ i jijR n r χα , ∈= ,  where ( ) ˆ ˆˆ ij ij ijr
αα = ,p q  with ˆ ijp  and ˆ ijq  defined in Equations (23) and (24), 

respectively, if considering the first type of weights given in (17), or in Equations (29) and (30), respectively, 
if considering the second type of weights given in (18).  
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