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We extend the Cone and Contraction Theorems of the Log Minimal Model Program to log varieties
with arbitrary singularities.

INTRODUCTION

The starting point of the Minimal Model Program is the Cone and Contraction Theorems of
S. Mori: the KX -negative part of the cone of effective curves of a nonsingular projective 3-fold X
is locally rationally polyhedral, with contractible faces. One hopes that, by replacing the original
variety with the target space of the contraction associated to a negative face, or a small modification
of it (a flip), one reaches a minimal model or a Mori–Fano fiber space after finitely many steps.
These intermediate varieties have singularities in dimension at least three; thus, it is clear that one
must consider varieties with some mild singularities in order to find minimal models.

In characteristic zero, Y. Kawamata, X. Benveniste, M. Reid, V.V. Shokurov, and J. Kollár
proved the Cone and Contraction Theorems for varieties with Kawamata log terminal singularities.
This part of the Log Minimal Model Program was expected to work for log varieties with arbitrary
singularities, under certain assumptions on rays or their contractions. This is our main result, and,
before we state it, we make the following definition:

Definition 1. A generalized log variety (X,B) is a pair consisting of a normal variety X and
an effective Weil R-divisor B such that K + B is R-Cartier. We denote by (X,B)−∞ the locus
where (X,B) does not have log canonical singularities (it has a natural subscheme structure). A log
variety is a generalized log variety that has log canonical singularities, i.e., (X,B)−∞ = ∅.

Theorem 2. Let (X,B) be a projective generalized log variety defined over a field of charac-
teristic zero. Let NE(X) be the closure of the cone of effective curves of X, and set

NE(X)−∞ = Im(NE((X,B)−∞) → NE(X)).

(i) Let F be a face of the cone NE(X) such that

F ∩ (NE(X)−∞ + NE(X)K+B≥0) = {0}.

Then there exists a projective contraction ϕF : X → Y that contracts exactly the curves
belonging to F . Furthermore, ϕF restricted to (X,B)−∞ is a closed embedding.

(ii) NE(X) = NE(X)K+B≥0 + NE(X)−∞ +
∑

Rj , where the Rj’s are the one-dimensional
faces satisfying the assumption in (i). Furthermore, the Rj’s are discrete in the half-space
N1(X)K+B<0.
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QUASI-LOG VARIETIES 221

This result is a special case of Theorem 5.10. As a corollary, we generalize a result of
J. Kollár [12] (in characteristic zero): if (X,B) has log canonical singularities outside a finite
set of points, the Cone Theorem holds exactly as in the Kawamata log terminal case. In partic-
ular, this holds for a normal surface with Q-Gorenstein singularities (cf. [16]). See also [18] for
applications.

We also establish the Base Point Free Theorem for generalized log varieties, including the log
big case (Theorems 5.1 and 7.2). Another application is the uniqueness of minimal lc centers of
(quasi-)log Fano varieties (Theorem 6.6).

For the proof, it turns out to be easier to work in a larger class of varieties that we call quasi-
log varieties. Their definition is motivated by Y. Kawamata’s X-method, which produces global
sections of adjoint line bundles L: we first create singularities that are not Kawamata log terminal
inside X, i.e., LCS(X) �= ∅. By adjunction, we expect that L|LCS(X) is still an adjoint line bundle;
hence, if it has a global section (by induction, for instance), we can lift it to a global section of L
by the Kawamata–Viehweg vanishing. Unlike the given variety, its LCS locus is no longer normal,
not even irreducible or equi-dimensional, and its log canonical class in the usual sense does not
make sense either. However, by definition, the LCS locus is the target space of a 0-log contraction
(cf. [18, 3.27(ii)]) from a variety with only embedded normal crossing singularities. We call quasi-
log varieties those varieties that appear as the target space of such contractions. Examples are
varieties with embedded normal crossing singularities, generalized log varieties, and their LCS loci
(see Examples 4.3).

A quasi-log variety X is endowed with an R-Cartier divisor ω, the descent of the log canonical
class of the total space of the 0-log contraction, a closed proper subscheme X−∞ ⊂ X, and a finite
family {C} of reduced and irreducible subvarieties of X. We say that ω is the quasi-log canonical
class of X, X−∞ is the locus where X does not have qlog canonical singularities, and the C’s are
the qlc centers of X. The open subset X \ X−∞ is reduced, with seminormal singularities. We
note here that singularities appearing on special LCS loci have been called semi-log canonical in
the literature.

The adjunction and vanishing for quasi-log varieties are proved in Theorem 4.4. The former
holds by the very definition, while the latter is an extension to normal crossing pairs of the vanishing
and torsion freeness theorems of J. Kollár, based on previous work by Y. Kawamata, H. Esnault,
and E. Viehweg. Applied to log varieties, our vanishing theorem is stronger than the Kawamata–
Viehweg (or Nadel) vanishing.

We expect that normal quasi-log varieties are equivalent (cf. Example 4.3.1) to generalized log
varieties according to the Adjunction Conjecture. We only have partial results in this direction (cf.
Proposition 4.7, Theorem 4.9, and Remarks 4.10). One should also note that, if the Adjunction
Conjecture holds, the X-method works inductively in the category of log varieties, as long as we
restrict to normal lc centers.

Finally, for technical reasons, we require that our varieties with normal crossing singularities
are globally embedded as hypersurfaces. This is enough for applications to generalized log varieties;
however, we expect that this extra assumption is not necessary (see Remark 2.9).
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1. PRELIMINARY

A variety is a scheme of finite type defined over an algebraically closed field k of characteristic
zero. We denote by Div(X) the abelian group of Cartier divisors of X. A K-Cartier divisor on X
is an element of Div(X)K := Div(X) ⊗Z K, for K ∈ {Z, Q, R}.

Let π : X → S be a proper morphism of varieties. We denote by Z1(X/S) the abelian group
generated by proper integral curves in X mapped to points by π. The natural pairing Div(X) ×
Z1(X/S) → Z induces, via numerical equivalence and tensoring with R, a perfect pairing of finite-
dimensional R-vector spaces N1(X/S) × N1(X/S) → R. We denote by NE(X/S) ⊂ N1(X/S) the
cone generated by proper integral curves in X mapped to points by π, and by NE(X/S) its closure in
the real topology. The dual of NE(X/S) in N1(X/S) is called the relatively nef cone. The relatively
ample cone Amp(X/S) is the cone of N1(X/S) generated by classes of relatively ample Cartier
divisors (if any). A K-Cartier divisor D is relatively nef (ample) if its class in N1(X/S) belongs to
the relatively nef (ample) cone. If X/S is projective, S. Kleiman proved that the relatively ample
cone is the interior of the relatively nef cone. In particular, a K-Cartier divisor D is relatively
ample if and only if (D · z) > 0 for all z ∈ NE(X/S) \ {0}.

An R-Cartier divisor D is relatively semiample if D ∼R f∗H, where f : X/S → Y/S is a proper
morphism and H is a relatively ample R-Cartier divisor. If D ∈ Div(X)Q, this is equivalent to
the surjectivity of the natural map π∗π∗OX(mD) → OX(mD) for some large and divisible positive
integer m.

An open subset U ⊆ X is called big if X \ U has codimension at least two in X.

2. NORMAL CROSSING PAIRS

Definition 2.1. A variety X has multicrossing singularities if, for every closed point x ∈ X,
there exist integers N, l, subsets I1, . . . , Il of {0, . . . , N}, and an isomorphism of complete local
rings

O∧
X,x

∼−→ k[[x0, . . . , xN ]]
(
∏

i∈I1 xi, . . . ,
∏

i∈Il
xi)

.

If l = 1 for every x ∈ X, we say that X has normal crossing singularities. Furthermore, if
each irreducible component of X is nonsingular, we say that X is a simple multicrossing (normal
crossing) variety.

For a scheme X, we denote by ε : X• → X the associated simplicial scheme ((X0/X)∆n →X)n≥0.
Here ε = {εn}, where ε0 : X0 → X is the normalization and εn is the natural projection. The
simplicial maps are δi : Xn+1 → Xn, x0 × . . . × xn+1 	→ x0 × . . . x̂i . . . × xn and si : Xn → Xn+1,
x0 × . . .×xn 	→ x0 × . . .×xi ×xi ×xi+1 × . . .×xn. This is a proper hypercovering [3, 7]. A stratum
of X is, by definition, the image on X of some irreducible component of X•.

Lemma 2.2. The following hold for a variety X with multicrossing singularities:

(i) The associated hypercovering ε : X• → X is proper, smooth, and of cohomological descent
with respect to locally free sheaves on X.

(ii) We have an isomorphism of functors Hom(X, ·) ∼−→ Hom(X•, · ).
(iii) X has seminormal singularities.

(iv) If X is a simple multicrossing variety, each stratum of X is nonsingular.

Proof. (i) Each εn is a finite map and, hence, is proper. It is also easy to see that each Xn is
nonsingular: in the notations of Definition 2.1, for α ∈ I1×. . .×Il, denote {α} = {α1, . . . , αl} ⊂ ∆N .
Also, denote by J the set of all elements of I1× . . .× Il that are minimal with respect to the partial
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order α ≤ β if and only if {α} ⊆ {β}. Then, at the complete local rings level, Xn is the spectrum of

∑
q : ∆n→J

k[[x0, . . . , xN ]]
(xi : i ∈ {q(0)} ∪ . . . ∪ {q(n)}) .

Finally, cohomological descent for a locally free sheaf F on X means that F
∼−→ R•ε∗(ε∗F ). Since ε

is finite, it is enough to show that the natural map OX → ε∗OX• is an isomorphism. This is a local
statement, and it can be checked as in [7, 4.1].

(ii) A morphism f : X → Y induces f : X• → Y with components fn = f ◦ εn. Conversely,
let f : X• → Y be a morphism. The induced map f : X → Y is defined set-theoretically by
f(x) := f0(ε−1

0 (x)). This map is well defined since any two points in the fiber of ε0 are the images
of some point on some Xn under different compositions of δi’s. Moreover, f is a morphism since,
for every h ∈ OY , f∗

0 (h) ∈ OX0 takes the same value on the glueing data, thus, it belongs to
OX ⊂ OX0 .

(iii) See [2].

(iv) The normalization ε0 is a disjoint union of embeddings. Therefore, the same holds for εn,
n ≥ 1. Each Xn is smooth since X has multicrossing singularities; hence, all strata are smooth. In
this case, the strata are the components of the intersections of irreducible components of X. �

Let X be a variety with multicrossing singularities. A Cartier divisor D on X is called permis-
sible if it induces a Cartier divisor D• on X•, i.e., Dn = ε∗nD is a Cartier divisor on Xn for every n
(equivalently, D contains no strata of X in its support). We say that D is a multicrossing divisor
on X if, in the notations of Definition 2.1, we have

O∧
D,x

∼−→ k[[x0, . . . , xN ]]
(
∏

i∈I1 xi, . . . ,
∏

i∈Il
xi,

∏
i∈I′ xi)

,

where I ′ ⊂ ∆N and I ′ ∩ ⋃l
j=1 Ij = ∅. We denote by Div0(X) the free abelian group generated by

all permissible Cartier divisors on X. A permissible K-divisor on X is an element of Div0(X)⊗Z K,
for K ∈ {Z, Q, R}. For a permissible K-divisor D =

∑
i diDi, its reduced part is

∑
di=1 Di. We

denote D>1 =
∑

di>1 diDi and D<1 =
∑

di<1 diDi. We say that D is a boundary (subboundary) if
0 ≤ di ≤ 1 ∀i (di ≤ 1 ∀i).

Definition 2.3. A multicrossing pair (X,B) is a multicrossing variety X endowed with a per-
missible R-divisor B whose support is a multicrossing divisor on X. If X has normal crossing
singularities, we say that (X,B) is a normal crossing pair.

A stratum of (X,B) is a stratum either of X or of the reduced part of B. Equivalently, the strata
are the images of strata of the log nonsingular pairs {(Xn, Bn)}n≥0. For instance, the maximal
strata of (X,B) are the irreducible components of X.

Remark 2.4. Compared with the generalized normal crossing varieties introduced by
Y. Kawamata [7], the ambient space X of a normal crossing pair has generalized normal crossing
singularities; however, B has arbitrary coefficients in our case.

Lemma 2.5. The following properties hold for a multicrossing pair (X,B):

(i) Each stratum is irreducible, with multicrossing singularities. A stratum that is minimal
(with respect to inclusion) is nonsingular.

(ii) There are only finitely many strata.

(iii) The nonempty intersection of any two strata is a union of strata. In particular, minimal
strata are mutually disjoint.
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We say that a permissible divisor D has multicrossing support on (X,B) if it contains no strata
of (X,B) and both D and its restriction to the reduced part of B have multicrossing support.
A variety with normal crossings X is a locally complete intersection; hence, it has an invertible
dualizing sheaf OX(K). The canonical divisor K ∈ Div(X) is well defined up to linear equivalence.

Remark 2.6 (dévissage). Let (X,B) be a normal crossing pair, and let Y be a union of
irreducible components of X. Denote by X ′ the union of the other irreducible components of X
and write BY = B|Y + X ′|Y , BX′ = Y |X′ + B|X′ . Then the following hold:

(i) (Y,BY ) and (X ′, BX′) are normal crossing pairs.

(ii) (K + B)|Y = KY + BY and (K + B)|X′ = KX′ + BX′ .

(iii) IY,X � j∗OX′(−Y |X′), where j : X ′ → X is the inclusion.

In particular, let L be a Cartier divisor on X such that L = K + B + H. Denote L′ = L|X′ −Y |X′ ,
so that L′ = KX′ +B|X′ +H|X′ . Then we have a short exact sequence 0 → j∗OX′(L′) → OX(L) →
OY (L|Y ) → 0.

Definition 2.7. We say that a normal crossing pair (X,B) is embedded if there exists a closed
embedding j : X → M , where M is a nonsingular variety of dimension dimX + 1.

Let (X,B) be an embedded normal crossing pair, and let C be a nonsingular stratum. The
embedded log transformation of (X,B) in C, denoted σ : (Y,BY ) → (X,B), is defined as follows:
let X ⊂ M be an embedding of X as a hypersurface in a nonsingular ambient space M . We denote
by Y the reduced structure of the total transform of X in the blow-up of M in C. The morphism
σ : Y → X is projective, Y has normal crossing singularities, the formula σ∗(K + B) = KY + BY

defines a divisor BY on Y , and the following properties hold:

(i) (Y,BY ) is an embedded normal crossing pair.

(ii) The strata of (X,B) are exactly the images of the strata of (Y,BY ).

(iii) OX
∼−→ R•σ∗OY .

(iv) σ−1(C) is a maximal stratum of (Y,BY ).

Proposition 2.8. Let X ′ ⊂ X be the union of some strata of an embedded normal crossing
pair (X,B). Then there exist an embedded normal crossing pair (Y,BY ) and a projective morphism
f : Y → X such that

(i) OX
∼−→ R•f∗OY ;

(ii) f∗(K + B) = KY + BY ;

(iii) the strata of (X,B) are exactly the images of the strata of (Y,BY );

(iv) f−1(X ′) is a union of maximal strata of (Y,BY ).

Proof. First, we may assume that each stratum of (X,B) is nonsingular. Indeed, after a finite
number of embedded log transformations of X in its minimal strata, each irreducible component
of X is nonsingular in the minimal strata of X, i.e., X has simple normal crossings. Similarly, the
reduced part of B becomes simple multicrossings after a finite sequence of embedded log transfor-
mations of (X,B) in the minimal strata of B.

Once each stratum of (X,B) is nonsingular, we reach the conclusion after a finite number of
embedded log transformations of (X,B) in the irreducible components of X ′. �

Remark 2.9. The embedded hypothesis is used to prove Proposition 2.8 and to resolve sin-
gularities of permissible subvarieties of a variety with normal crossings. Once the latter has been
established, we expect our results to work for abstract normal crossing pairs.
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3. VANISHING THEOREMS

We extend the vanishing and torsion freeness theorems of J. Kollár [11] to normal crossing pairs.
The proof is based on logarithmic de Rham complexes, and we follow closely the presentation of [4].
See also [7].

Theorem 3.1. Assume that (X,B) is an embedded normal crossing pair such that X is a
proper variety and B is a boundary. Let L be a Cartier divisor on X, and let D be an effective
Cartier divisor, permissible with respect to (X,B), with the following properties:

(i) L ∼R K + B + H.
(ii) H ∈ Div(X)R is semiample.
(iii) tH ∼R D + D′ for some positive real number t and for some effective R-Cartier divisor D′

permissible with respect to (X,B).

Then the natural maps Hq(X,OX (L)) → Hq(X,OX (L + D)) are injective for all q.
Proof. Blowing up X and incorporating the negative part of B into the pullback of L, we may

assume that both (X,B) and D +D′ have normal crossing supports. Furthermore, we may assume
that H = aD +a′D′, where a > 0, a′ ≥ 0, and B′ = B +aD +a′D′ is a boundary with �B′� = �B�.

We have L ∼R K + B′. Since L and K are integral divisors, the set of boundaries having the
same support and reduced part as B′ and satisfying the above equality forms a rational polyhedron.
After a perturbation of its fractional part, we may assume that B′ is rational. In particular,
T = −L + K + B′ is a Q-Cartier divisor and νT ∼ 0 for some positive integer ν. Assume that ν is
minimal with this property. Denote E = OX(−L + K), and let R be the support of B′.

Let X• → X be the associated smooth, proper hypercovering. By Serre duality and cohomo-
logical descent, we have to check the surjectivity of the maps

Hq(X•, E•(−D•)) → Hq(X•, E•).

We use the following commutative diagram:

Hq(X•, E•(−D•)) → Hq(X•, E•)

Hq(X•,Ω•
X•(log R•) ⊗ E•(−D•))

↑

α→ Hq(X•,Ω•
X•(log R•) ⊗ E•)

β
↑

Since −L+K = �T �−�B�, the restriction of E• to each component of X• admits a logarithmic con-
nection with poles along R• whose residues along the components of D• belong to the interval (0, 1)
[4, 3.2]. By [4, 4.3], the map

Ω•
X•(log R•) ⊗ E•(−D•) → Ω•

X•(log R•) ⊗ E•

is a quasi-isomorphism componentwise; thus, it is a quasi-isomorphism of simplicial complexes.
Therefore, α is an isomorphism.

Let π : Y• → X• be the cyclic cover of degree ν corresponding to the torsion divisor T •. By [3],
the spectral sequence

Epq
1 = Hq(Y•,Ω

p
Y•(log R•)) =⇒ Hp+q(Y•,Ω•

Y•(log R•))

degenerates. Since E• is a direct summand of π∗Ω•
Y•(log R•), the spectral sequence

Epq
1 = Hq(X•,Ω

p
X•(log R•) ⊗ E•) =⇒ Hp+q(X•,Ω•

X•(log R•) ⊗ E•)

degenerates as well. Therefore, β is surjective. �
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Theorem 3.2. Let (Y,B) be an embedded normal crossing pair, and assume that B is a bound-
ary. Let f : Y → X be a proper morphism, and let L be a Cartier divisor on Y such that
H = L − (K + B) is f -semiample.

(i) Every nonzero local section of Rqf∗OY (L) contains in its support the f-image of some strata
of (Y,B).

(ii) Let π : X → S be a projective morphism, and assume that H ∼R f∗H ′ for some π-ample
R-Cartier divisor H ′ on X. Then Rqf∗OY (L) is π∗-acyclic.

Proof. (i) The conclusion is local; therefore, we may shrink X to an affine open subset and
compactify it afterwards, so that X is projective, Y is proper, and H is semiample. If Rqf∗OY (L)
admits a local section whose support does not contain any image of the (Y,B)-strata, one can find
a very ample divisor A such that

• H0(X,Rqf∗OY (L)) → H0(X,Rqf∗OY (L) ⊗OX(A)) is not injective;
• f∗A is a permissible multicrossing divisor on (Y,B);
• the Leray spectral sequence of L + f∗A with respect to f degenerates.

Replacing L by L + f∗A if necessary, we may also assume that H − f∗A is semiample. The degen-
eration of the Leray spectral sequence implies that the map Hq(Y,OY (L)) → Hq(Y,OY (L + f∗A))
is not injective, which contradicts Theorem 3.1.

(ii) Assume that dim S = 0, and let H = f∗HX . If X has positive dimension, one can find
a divisor A in some large, divisible multiple of H, such that its pullback A′ = f∗A is a permissible
multicrossing divisor on (Y,B) and Rqf∗OY (L + A′) is π∗-acyclic for all q. By (i), we have short
exact sequences

0 → Rqf∗OY (L) → Rqf∗OY (L + A′) → Rqf∗OA′(L + A′) → 0,

where Rqf∗OY (L+A′) is π∗-acyclic by assumption, while Rqf∗OA′(L+A′) is π∗-acyclic by induction
on X. Therefore, Ep,q

2 = 0 for p ≥ 2 in the following commutative diagram of spectral sequences:

Ep,q
2 = Rpπ∗R

qf∗OY (L) =======⇒ Rp+q(π ◦ f)∗OY (L)

Ep,q
2 = Rpπ∗R

qf∗OY (L + A′)

ϕp,q

↓
===⇒ Rp+q(π ◦ f)∗OY (L + A′)

ϕp+q

↓

Since E1,q
2 → R1+q(π ◦ f)∗OY (L) is injective, ϕ1+q is injective by Theorem 3.1, and E1,q = 0 by

assumption, we obtain E1,q
2 = 0.

Assume now that S is affine of positive dimension and π◦f surjects Y onto S. We use induction
on the dimension of S.

a) Assume that each stratum of (Y,B) dominates a generic point of S. From the case dim S = 0,
Rpπ∗Rqf∗OY (L) (p > 0) does not contain any generic point of S in its support. Therefore, there
exists a general hyperplane section A of S, containing the support of all these sheaves, such that its
pullback A′ on Y is a multicrossing divisor on (Y,B). The argument in (i) shows that Rqf∗OY (L)
is π∗-acyclic, except that ϕp+q is injective by (i) now, and Rpπ∗Rqf∗OY (L)⊗OS(A) is zero by the
choice of A.

b) Let Y ′ be the union of all strata of (Y,B) that are not mapped onto generic points of S.
After a sequence of embedded log transformations, we may assume that Y ′ is a union of irreducible
components of Y . By (i), we have exact sequences

0 → Rqf∗(IY ′(L)) → Rqf∗OY (L) → Rqf∗OY ′(L) → 0.

From Remark 2.6, Rqf∗(IY ′(L)) ∼−→ Rqf∗OY ′′(L′′), where L′′ = KY ′′ + B|Y ′′ + f∗H. The pair
(Y ′′, B|Y ′′) satisfies the hypothesis in a); hence, the first term is π∗-acyclic. The third is π∗-acyclic
by induction; thus, Rqf∗OY (L) is π∗-acyclic. �
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4. QUASI-LOG VARIETIES

Definition 4.1. A quasi-log variety is a scheme X endowed with an R-Cartier divisor ω,
a proper closed subscheme X−∞ ⊂ X, and a finite collection {C} of reduced and irreducible
subvarieties of X such that there exists a proper morphism f : (Y,BY ) → X from an embedded
normal crossing pair satisfying the following properties:

(1) f∗ω ∼R KY + BY .

(2) The natural map OX → f∗OY (�−(B<1
Y )�) induces an isomorphism

IX−∞ → f∗OY (�−(B<1
Y )� − �B>1

Y �).

(3) The collection of subvarieties {C} coincides with the images of (X,B)-strata that are not
included in X−∞.

We use the following terminology: the subvarieties C are the qlc centers of X, X−∞ is the non-
qlog canonical locus of X, and f : (Y,B) → X is a quasi-log resolution of X. We say that X has
qlog canonical singularities if X−∞ = ∅. Note that a quasi-log variety X is the union of its qlc
centers and X−∞. A relative quasi-log variety X/S is a quasi-log variety X endowed with a proper
morphism π : X → S.

For simplicity, we will refer to a quasi-log variety as X or (X,ω).

Remarks 4.2. (i) X has qlog canonical singularities if and only if B is a subboundary. Indeed,
the commutative diagram

0 → f∗IN → f∗OY → f∗ON

0 → IX−∞

	
↑

→ OX

↑

→ OX−∞

↑

→ 0

implies that X−∞ ∩ f(Y ) = f(N), where N = �B>1
Y �. Note that X−∞ � X by assumption, but

X−∞ may contain irreducible components of X. Also, f may not be surjective (cf. Example 4.3.4).

(ii) If B is a subboundary, property (2) of Definition 4.1 says that the natural morphism
OX → f∗OY (�−(B<1

Y )�) is an isomorphism. In particular, f is a surjective map with connected
fibers. Furthermore, X is seminormal by [2]. In general, the same holds over the open subset of
qlog canonical singularities U = X \ X−∞.

(iii) The quasi-log canonical class ω is defined up to R-linear equivalence. This is more general
than the case of generalized log varieties, where the log canonical class K +B is defined up to linear
equivalence.

(iv) The quasi-log resolution plays a role similar to that of a log resolution. Embedded log
transformations of (Y,BY ), or blow-ups of Y in centers that contain no (Y,BY )-strata, leave the
quasi-log structure on X invariant. Furthermore, we may slightly perturb the nonreduced compo-
nents of B. In particular, if ω is a Q-divisor, we may assume that B is a Q-divisor.

Proof of (iv). We check the invariance of the structure under permissible blow-ups (for em-
bedded log transformations, this is easier). The blow-ups do not introduce new (Y,B)-strata;
therefore, we only need to check the invariance of the ideal sheaf in (2) of Definition 4.1. By
cohomological descent, we may assume that Y is nonsingular and BY is a divisor with normal
crossing support. Assume that σ : (Y ′, BY ′) → (Y,BY ) is a crepant log nonsingular model. Denote
∆ = BY −�BY �, let R be the reduced part of BY , and define ∆′ and R′ similarly. Note the identity

�−(B<1
Y )� − �B>1

Y � = �−BY � + R.
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We have (�−BY ′�+R)−σ∗(�−BY ′�+R) = KY ′ +∆′ +R′−f∗(KY +∆+R). It is enough to show
that the right-hand side is effective. Assume that it is negative in some divisor E. Its coefficient
multE(∆′ + R′) + a(E;∆ + R) − 1 is integral; hence, multE(∆′ + R′) + a(E;∆ + R) ≤ 0 (here
a(E;∆+R) is the log discrepancy of E with respect to (Y,∆+R)). Therefore, multE(∆′ +R′) = 0
and a(E;∆ + R) = 0. The latter implies that cY (E) is a stratum of R; hence, we also have
a(E;BY ) = 0 by the normal crossing assumption. Equivalently, multE(R′) = 1. Contradiction. �

Examples 4.3. 1. Any generalized log variety (X,B) is a quasi-log variety: let ω be any
R-Cartier divisor such that ω ∼R K + B, and let X−∞ be the locus where (X,B) does not have
log canonical singularities (with the induced closed subscheme structure). A quasi-log resolution
is a log resolution. The qlc centers are exactly the subvarieties C of X such that (X,B) has zero
log discrepancy in the generic point of C. With the exception of X (which is a qlc center), the qlc
centers of (X,ω) are exactly the lc centers of Y. Kawamata [8] that are not included in (X,B)−∞.
This is natural since we do not expect any adjunction on lc centers along which (X,B) does not
have log canonical singularities.

Conversely, if Y is nonsingular, f is birational, and X is normal, then X is associated (equiv-
alent) to a generalized log variety as above. Indeed, the corresponding generalized log variety is
(X, f∗BY ).

2. Let (Y,BY ) be a proper log variety such that KY + BY is nef. The Abundance Conjecture
predicts the existence of a proper morphism f : Y → X to a projective variety X such that KY +
BY ∼R f∗H for some ample divisor H ∈ Div(X)R. Then X is a quasi-log variety with qlog
canonical singularities, with ω ∼R H and quasi-log resolution f .

3. Let (X,B) be a generalized log variety, and assume that X = LCS(X,B) intersects the
open subset on which (X,B) has log canonical singularities. Then X is a quasi-log variety, where
ω ∼R (KX + B)|X and X−∞ = (X,B)−∞. A quasi-log resolution of X is induced by restriction to
the reduced part of the boundary on a log resolution of (X,B):

(Y,BY ) → (Y ,B)

X

f
↓

→ (X,B)

µ↓

Here KY + B = µ∗(KX + B), Y is the reduced part of B, and BY = (B − Y )|Y .
4. Let X be a divisor with normal crossing support in a nonsingular variety X, and assume that

Y , the reduced part of X, is nonempty. Then X is a quasi-log variety, where ω ∼R (KX + X)|X ,
and X−∞ is the union of nonreduced components of X. A quasi-log resolution is f : (Y,BY ) → X,
where BY is defined by the adjunction formula KY + BY = (KX + X)|Y .

Theorem 4.4 (adjunction & vanishing). Let X be a quasi-log variety, and let X ′ be the union
of X−∞ with a (possibly empty) union of some qlc centers of X.

(i) Assume that X ′ �= X−∞. Then X ′ is a quasi-log variety, with ω′ = ω|X′ and X ′
−∞ = X−∞.

Moreover, the qlc centers of X ′ are exactly the qlc centers of X that are included in X ′.
(ii) Assume that X/S is projective, and let L ∈ Div(X) such that L − ω is π-ample. Then

IX′ ⊗OX(L) is π∗-acyclic.

Proof. (i) After embedded log transformations, we may assume that the union of all strata of
(Y,BY ) mapped into X ′, which we denote by Y ′, is a union of irreducible components of Y . Define
BY ′ by (KY +BY )|Y ′ = KY ′ +BY ′ . We claim that f : (Y ′, BY ′) → X ′ is a quasi-log resolution. The
adjunction formula is clear; therefore, we just check the second property. Denote A = �−(B<1

Y )�
and N = �B>1

Y �. Let Y ′′ be the subscheme of Y whose ideal sheaf I is defined by the exact sequence

0 → I → OY (−N) → OY ′(−N) → 0.
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The ideal of the subscheme X ′ is the unique ideal sheaf IX′ ⊂ IX−∞ for which the induced map
IX′ → f∗I(A) is an isomorphism. Consider the following commutative diagram:

0 → f∗I(A) → f∗OY (A − N) → f∗OY ′(A − N) → 0

0 → f∗I(A)

=↓
→ f∗OY (A)

↓
→ f∗OY ′′(A)

↓

0 → IX′

	
↑

→ OX

↑

→ OX′

↑

→ 0

The map f∗OY ′(A − N) → f∗OY ′′(A) is injective by the definition of I. Moreover, I(A) �
IY ′ ⊗ OY (A − N) and KY + BY ∼R 0/X. By the choice of Y ′, we deduce from Theorem 3.2(i)
that any local section of R1f∗I(A) that is supported by f(Y ′) is zero. Therefore, the top row
is exact. It is easy to see that IX′

−∞
:= IX−∞/I → f∗OY ′(A − N) is an isomorphism. Finally,

the characterization of the qlc centers of X ′ follows from the choice of Y ′ and the corresponding
statement for (Y ′, BY ′) and (Y,BY ).

(ii) As in the proof of Theorem 3.2(ii), b), it follows from Theorem 3.2(ii) that f∗I(A)⊗OX(L)
is π∗-acyclic. �

Remark 4.5. The above proof gives a commutative diagram of short exact sequences

0 → IX′ → IX−∞ → IX′
−∞

→ 0

0 → IX′

=
↓

→ OX

↓
→ OX′

↓
→ 0

Therefore, we can lift the global sections of OX(L) or IX−∞ ⊗OX(L) from X ′/S to X/S.

Definition 4.6. The LCS locus of a quasi-log variety X, denoted by LCS(X), is the union of
X−∞ with all qlc centers of X that are not maximal with respect to the inclusion. The subscheme
structure is defined as above, and we have a natural embedding X−∞ ⊆ LCS(X).

Proposition 4.7. Let X be a quasi-log variety whose LCS locus is empty. Then X is normal.

Proof. We may assume that X is connected. Let f : (Y,BY ) → X be a quasi-log resolution
of X. By assumption, BY is a subboundary, f is surjective with connected fibers, and each stratum
of (Y,BY ) dominates some irreducible component of X. We first show that X is irreducible.
Indeed, let {Xi} be the irreducible components of X, and let Yi be the union of strata of Y that
dominate Xi. A nonempty intersection of two strata mapped on different components cannot
dominate some component of X; thus, Y is the disjoint union of the closed subsets Yi. But Y is
connected since f has connected fibers; thus, X is irreducible.

Let fn : Yn → X be the induced morphisms. Then Yn =
⊔

j Y j
n is the disjoint union of its

irreducible components, and fn =
⊔

f j
n. Each f j

n : Y j
n → X is dominant and, thus, factors through

the normalization: f j
n = ν ◦ gj

n. The maps {gn =
⊔

gj
n}n glue to a morphism g : Y• → Xν that

factors f : Y• → X. This map extends to Y according to Lemma 2.2(ii).
Therefore, f factors through the normalization of X. Since f has connected fibers and X is

seminormal, the normalization is an isomorphism. �
The following properties of qlc centers generalize [8, 1.5, 1.6] (in particular, minimal lc centers

of log varieties have normal singularities):
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Proposition 4.8. Assume that X is a quasi-log variety with qlog canonical singularities. The
following hold :

(i) The intersection of two qlc centers is a union of qlc centers.
(ii) For any point P ∈ X, the set of all qlc centers passing through P has a unique minimal

element W . Moreover, W is normal at P .

Proof. (i) Let C1 and C2 be two qlc centers of X. Fixing P ∈ C1 ∩ C2, it is enough to find
a qlc center C such that P ∈ C ⊂ C1 ∩C2. The union X ′ = C1 ∪C2 is a quasi-log variety with two
irreducible components; hence, it is not normal at P . By Proposition 4.7, P ∈ LCS(X ′). Therefore,
there exists a qlc center C ⊂ C1 with dimC < dim C1 such that P ∈ C ∩ C2. If C ⊂ C2, we are
done. Otherwise, we repeat the argument with C1 := C and reach the conclusion in a finite number
of steps.

(ii) The uniqueness follows from (i), and the normality follows from Proposition 4.7. �
Theorem 4.9 (cf. [9]). Let (X/S,B) be a relative generalized log variety. Let ν : W → X

be the normalization of an irreducible component of LCS(X,B), and assume that ν(W ) is an
exceptional lc center. The following hold :

(i) There exists a quasi-log structure on W such that ω ∼R ν∗(K + B) and LCS(W,ω) ⊆
ν−1((X,B)−∞ ∪ ⋃{C lc center �= ν(W )}).

(ii) Assume that H is a nef and big R-divisor on W/S. Then there exists a generalized log variety
structure (W,BW ) on W such that ω + H ∼R KW + BW and LCS(W,BW ) ⊆ LCS(W,ω).

Remarks 4.10. 1. This is a weak form of adjunction. We expect that the inclusion in (i) is
an equality (we prove this on a big open subset of W ). Furthermore, (ii) should hold in a stronger
form: the quasi-log structure of (W,ω) is equivalent to the log structure of (W,BW ).

2. (X,B) induces a natural R-b-divisor Bdiv of W , called the divisorial part of adjunction
(cf. [1, §3]), and the following inequality is expected to hold:

A(W,BW ) ≤ −Bdiv.

If dim X ≤ 4, this follows from [14]: there exists a birational model W ′/W such that −Bdiv =
A(W ′, (Bdiv)W ′). This implies the desired inequality if we choose a high enough model W ′/W in
step (ii) of the proof.

Proof of Theorem 4.9. (i) The lc center being exceptional means that, among the valuations
centered at ν(W ) on X, there exists a unique valuation E with zero log discrepancy with respect
to (X,B). Let µ : (Y,BY ) → (X,B) be a crepant log resolution such that E is a divisor on Y . We
can write BY = E +B′ and set BE = B′|E and ω = ν∗(K +B). Since f : E → ν(W ) has connected
general fiber, its Stein factorization is g : E → W :

(Y,BY ) ← (E,BE)

(X,B)

µ↓
←

ν
(W,ω)

g↓

We claim that g defines a quasi-log structure on W . Indeed, the crepant hypothesis is satisfied
since g∗ω ∼R KE + BE. For the second hypothesis, it suffices to show the following equality:

OW = g∗OE(�−(B<1
E )�).

We have a natural inclusion j : OW → g∗OE(�−(B<1
E )�) which is an isomorphism in the generic

point of W . Since OW is reflexive and g∗OE(�−(B<1
E )�) is torsion free, it is enough to check

ТРУДЫ МАТЕМАТИЧЕСКОГО ИНСТИТУТА ИМ. В.А. СТЕКЛОВА, 2003, т. 240



QUASI-LOG VARIETIES 231

surjectivity in codimension-one points of W (cf. [15, 2.iv]). For this, we may assume that W is
a curve and X is a germ at a closed point P ∈ ν(W ). If �−B′� is effective, then ν(W ) is normal
at P and the desired equality holds. If �−B′� is not effective, then f∗OY (�−B′�) ⊆ mP,X . On the
other hand, R1µ∗OY (�−BY �) is torsion free by Theorem 3.2(i). Therefore, we have a surjection

µ∗OY (�−B′�) → g∗OE(�−BE�) → 0.

In particular, g∗OE(�−BE�) ⊂ mQ,W for every point Q ∈ ν−1(P ). This implies that �−(B<1
E )�

contains none of the fibers g−1(Q) in its support. Consequently, OW = g∗OE(�−(B<1
E )�) at P .

By construction, ν(LCS(W,ω)) is contained in the union of (X,B)−∞ and all lc centers of
(X,B) different from ν(W ) (this is the subscheme of X with ideal sheaf µ∗OY (�−B′�)).

(ii) We may assume that g factors as g = σ ◦ h, where σ : W ′ → W is a resolution such
that (E,P ) h−→ (W ′, Q) → S satisfies the assumptions of Theorem 4.11, BE is supported by P ,
Supp(Bh

E) has relative normal crossings over W ′ \ Q, and h(Supp(Bv
E)) ⊆ Q.

Define BW ′ =
∑

biQi by the formulas 1 − bi = minPj/Qi

1−bj

mPj/Qi
, and let M be an R-divisor

on W ′ such that

KE + BE ∼R h∗(KW ′ + BW ′ + M).

Since g∗OE(�−BE�) ⊂ OW , the negative part of BW ′ is exceptional over W . Also, LCS(W ′, BW ′) ⊂
σ−1(LCS(W,ω)): if bi ≥ 1, there exists Pj/Qi such that bj ≥ 1; hence, σ(Qi) = g(Pj) ⊂ LCS(W,ω).
Note that Bdiv = σ∗BW ′ is the divisorial part of adjunction induced by (X,B) on W (cf. [1, §3]).

Since D = BE − h∗BW ′ satisfies the hypothesis of Theorem 4.11, M is nef/S. In particular,
M+σ∗H is nef and big/S; thus, there exists an effective R-divisor ∆ with arbitrary small coefficients
such that M + σ∗H ∼R ∆. We set BW = σ∗(BW ′ + ∆) = Bdiv + σ∗∆. Then σ : (W ′, BW ′ + ∆) →
(W,BW ) is a crepant birational contraction; hence, the claim follows. �

Theorem 4.11 [9, Theorem 1]. Let h : (Y, P ) → (X,Q) be a projective contraction of non-
singular quasiprojective varieties endowed with simple normal crossing boundaries Q =

∑
Qi and

P =
∑

Pj , such that h is smooth over X \Q, h−1(Q) ⊂ P, and if we decompose P = P h +P v, then
h(P v) ⊂ Q and P h/X has relative simple normal crossings over X \ Q.

Assume that X/S is a proper morphism, and let D be an R-divisor on Y with the following
properties:

(1) KY + D ∼R h∗(KX + M) for some R-divisor M on X.

(2) �−Dh� is effective, and rankh∗OY (�−D�) = 1.

(3) D =
∑

djPj is supported by P .

(4) For each i, dj ≤ 1 − multQi h∗Pj if h(Pj) = Qi, and equality holds for some j.

Then M is nef /S.

Proof. Assume first that D and M are Q-divisors and KY + D ∼Q h∗(KX + M). The claim
is just a noncompact version of [9, Theorem 1]. The same argument works since the semipositivity
follows from local analytic computations. Note that Theorem 1 in [9] is stated under the extra
assumption �−D� ≥ 0, which is however not used during the proof (cf. [1, 3.5]).

Consider the general case. Assumption (1) reads as

KY + D +
∑
k

rk(ϕk) = h∗(KX + M),

where ϕk are rational functions on Y and rk are real numbers. If we consider D as a function of the
rk’s and the coefficients of M , properties (2)–(4) impose rational constraints on them. Therefore,
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there exist rational approximations liml→∞ r
(l)
k = rk, liml→∞ D(l) = D, and liml→∞ M (l) = M such

that
KY + D(l) +

∑
k

r
(l)
k (ϕk) = h∗(KX + M (l)),

D(l) satisfies (2)–(4), and D(l) −D and M (l) −M are supported by the irrational components of D
and M , respectively. The rational case implies that M (l) is nef/S for every l. But M = liml→∞ M (l);
hence, M is nef/S as well. �

5. THE CONE THEOREM

We follow the arguments of [10, 2-4] and [13], which we also refer to for references.
Theorem 5.1 (Base Point Free Theorem). Assume that X/S is a projective quasi-log variety.

Let L be a π-nef Cartier divisor on X such that

(i) qL − ω is a π-ample for some q ∈ R;
(ii) OX−∞(mL) is π|X−∞-generated for m � 0.

Then OX(mL) is π-generated for m � 0.
Proof. We may shrink S to an affine open subset without further notice.
1. OX(mL) is π-generated on LCS(X) for m � 0. Set X ′ = LCS(X). The vanishing R1π∗IX′⊗

OX(mL) = 0 (m ≥ q) implies the surjectivity of the top horizontal map in the diagram below:

π∗π∗OX(mL) → π∗π∗OX′(mL)

OX(mL)

α↓
→ OX′(mL)

α′
↓

If X ′ = X−∞, α′ is surjective for m � 0 by assumption. If X ′ �= X−∞, then X ′ is a quasi-log
variety; hence, α′ is surjective for m � 0 by induction. Therefore, α is surjective on X ′ for m � 0.

2. OX(mL) is π-generated on a nonempty set for m � 0. According to step 1, we may assume
that LCS(X) = ∅. In particular, X is normal.

(a) Assume that L is π-numerically trivial. Vanishing implies that π∗OX(L) and π∗OX(−L)
are nonzero [17]. Therefore, L is trivial and, hence, π-generated.

(b) Assume that L is not π-numerically trivial. Denote H = qL−ω. Using a quasi-log resolution
of X, we can find an R-divisor D on X such that D ∼Q c(H+mL), 0 < c < 1, and (X,ω+D)
has qlog canonical singularities, with nonempty LCS locus [17]. Setting q′ = q + cm, we
reduce the case to step 1.

3. Assume that OX(mL) is π-generated on a nonempty subset containing LCS(X) and denote
by Bslπ |mL| the locus X where OX(mL) is not π-generated. Then Bslπ |mL| is not contained in
Bslπ |m′L| for m′ � 0.

Let f : (Y,B) → X be a quasi-log resolution. For D ∈ |mL| general, we may assume that
f∗D = F + M has multicrossing support with respect to (Y,BY ), where F is the π-fixed part and
M is reduced. Let c be maximal such that B′

Y = BY + cf∗D is a subboundary above X \ X−∞.
Then f : (Y,B′

Y ) → (X,ω′) is a quasi-log resolution of a quasi-log variety, with ω′ = ω + cD and
X ′

−∞ = X−∞. Moreover, (X,ω′) has a qlc center C included in Bslπ |mL|. Applying step 1 with
q′ = q + cm, we infer that OX(m′L) is π-generated on C for m′ � 0.

4. The above steps imply that OX(aL) and OX(bL) are π-generated if a and b are very high
powers of two prime numbers. Since a and b are relatively prime, they generate the semigroup Z≥N

for some N . Therefore, OX(mL) is π-generated for m ≥ N . �
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Definition 5.2. Let (X/S,ω) be a quasi-log variety, with non-qlog canonical locus X−∞. Set

NE(X/S)−∞ := Im(NE(X−∞/S) → NE(X/S)).

For D ∈ Div(X)R, set D≥0 := {z ∈ N1(X/S); D · z ≥ 0} (similarly for > 0, ≤ 0, and < 0) and
D⊥ := {z ∈ N1(X/S); D · z = 0}. We also use the notation

NE(X/S)D≥0 := NE(X/S) ∩ D≥0,

and similarly for > 0, ≤ 0, and < 0.
Definition 5.3. An extremal face of NE(X/S) is a nonzero subcone F ⊆ NE(X/S) such that

z, z′ ∈ NE(X/S) and z + z′ ∈ NE(X/S) imply that z, z′ ∈ F . Equivalently, F = NE(X/S) ∩ H⊥

for some π-nef R-divisor H ∈ Div(X)R (called a supporting function of F ). An extremal ray is
a 1-dimensional extremal face.

(i) An extremal face F is called ω-negative if F ∩ NE(X/S)ω≥0 = {0}.
(ii) An extremal face F is called relatively ample at infinity if F ∩NE(X/S)−∞ = {0}. Equiva-

lently, H|X−∞ is π|X−∞-ample for any supporting function H ∈ Div(X)R of F .
(iii) An extremal face F is called contractible at infinity if it has a rational supporting function

H ∈ Div(X)Q such that H|X−∞ is π|X−∞-semiample.

Remarks 5.4. 1. Let F be an extremal face that is ample at infinity. Then F is contractible
at infinity if and only if F is rational, i.e., if it has a supporting function given by a rational divisor.
We will show in the Cone Theorem that if an ω-negative extremal face is ample at infinity, then it
is contractible at infinity.

2. Any ω-negative extremal face is relatively ample at infinity if ω is relatively nef on X−∞ (in
particular, if X−∞ is empty).

Definition 5.5. Let F be an extremal face of NE(X/S). The contraction of F is a projective
morphism onto a projective variety Y/S

X
ϕF → Y

S

σ

←
π →

satisfying the following properties:

(1) Let C be an irreducible curve of X such that π(C) is a point. Then ϕF (C) is a point if and
only if [C] ∈ F .

(2) OY = (ϕF )∗OX .

By Zariski’s Main Theorem, such a morphism is unique if it exists.
Theorem 5.6 (Contraction Theorem). Let X/S be a projective quasi-log variety. Let F be

an ω-negative extremal face of NE(X/S) that is contractible at infinity. Then the contraction of
the face F exists.

Proof. Let H ∈ Div(X) be a π-nef divisor such that H|X−∞ is relatively semiample and
F = NE(X/S) ∩ H⊥. By Kleiman’s ampleness criterion, aH − ω is π-ample for some positive
integer a. Scaling H, we may assume that its restriction at infinity is relatively free. According
to the Base Point Free Theorem, some multiple of H is relatively free. The Stein factorization
ϕ : X/S → Y/S of the associated morphism satisfies the following properties:

(1) H ∼Q ϕ∗(A) for some relatively ample A ∈ Div(Y )Q.
(2) OY = ϕ∗OX .

Since A is relatively ample, it is clear that ϕ is the contraction of the face F . �
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Remark 5.7. Let F be an ω-negative extremal face that is contractible at infinity. Then F
is relatively ample at infinity if and only if the associated contraction ϕF : X → Y embeds X−∞
into Y .

Lemma 5.8. Let P (x, y) be a nontrivial polynomial of degree at most d, let a be a positive
integer, and let r be either an irrational number or a rational number such that, in reduced form,
ra has numerator bigger than (d + 1)a. Then P (x, y) �= 0 for all sufficiently large integral points in
the strip {rax − r < y < rax}.

Proof. If r is not rational, there are integral points of the strip that are infinitely close to the
line {y = rax}. If r is rational, let ra = u

v be the reduced form decomposition. The line {y =
rax− 1

v} has infinitely many integral points, and it is included in the strip {rax− r
d+1 < y < rax}

if u > a(d + 1).
In both cases, there are infinitely many rays passing through the origin that have at least d + 1

integral points common with the strip {rax− r < y < rax}. Since P is nontrivial, it cannot vanish
on more than a finite number of them. �

Theorem 5.9 (Rationality Theorem). Assume that X/S is a projective quasi-log variety such
that ω ∈ Div(X)Q. Let H be a π-ample Cartier divisor on X, and let r be a positive number such
that

(i) ω + rH is π-nef but not π-ample;

(ii) (ω + rH)|X−∞ is π|X−∞-ample.

Then r is a rational number, and, in reduced form, ra has numerator at most a(dim X/S + 1),
where a is the index of ω.

Proof. Assume, by contradiction, that r does not satisfy the required properties. In particular,
the strip

S = {(x, y) ∈ N2; rax − r < y < rax, (x, y) large}

has infinitely many points. Set L(x, y) = xaω +yH. The family of Cartier divisors {L(x, y)}(x,y)∈S
has the following properties with respect to (X,ω):

(1) The locus Bslπ |L(x, y)|, where OX(L(x, y)) is not π-generated, is independent of (x, y) ∈ S.
We denote this base locus by Λ.

Proof. Note first that if (x, y) is a given point of S and (kx, ky) is a large multiple that does not
lie in S, then L(x′, y′) − L(kx, ky) is π-ample and π-generated for large (x′, y′) ∈ S. In particular,
for a given (x, y), Bslπ |L(x, y)| contains Bslπ |L(x′, y′)| for large (x′, y′) ∈ S. The claim follows by
Noetherian induction.

(2) L(x, y) is an adjoint divisor with respect to ω for all (x, y).

Proof. L(x, y)− ω = (xa− 1)(ω + rH) + (y − rax + r)H is π-ample for y > rax− r. Note that
L(x, y) is π-ample for y > rax.

(3) Λ ∩ (X,ω)−∞ = ∅, and, for each qlc center C of (X,ω), there exists (x, y) such that
OC(L(x, y)) is π|C -generated on some nonempty subset.

Proof. Since L(x, y) are adjoint with respect to ω, we can lift the global sections of OX(L(x, y))
from X−∞. Therefore, Λ does not intersect the non-qlog canonical locus if OX−∞(L(x, y)) is
relatively generated for infinitely many values in S. The line y = rax is relatively ample on X−∞;
hence, Lemma 5.8 implies the existence of infinitely many points (x, y) of S for which L(x, y)|X−∞

is relatively ample. The same argument as in (1) shows that OX−∞(L(x, y)) are relatively generated
for large values.
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For the latter part, let C be a qlc center of X. We may assume that C does not intersect X−∞
and S is a point. By adjunction, L(x, y)|C are adjoint; hence,

P (x, y) = dim H0(C,OC (L(x, y))) = χ(C,OC (L(x, y)))

is a polynomial of degree at most dim C ≤ dim X/S. It is a nontrivial polynomial; hence, P (x, y) �= 0
for (x, y) ∈ S by Lemma 5.8 again.

By adjunction, for any family L(x, y) satisfying (1)–(3) above, the common base locus Λ does
not intersect X−∞ and does not contain any qlc center of X.

If Λ = ∅, then OX(L(x, y)) is π-generated, in particular, π-nef. This is a contradiction.
Therefore, Λ is nonempty. Let D be a general member of |L(x, y)|, and choose 0 < c ≤ 1 maximal
such that ω′ := ω + cD has qlog canonical singularities outside X−∞. Note that (X,ω′) and
(X,ω) have the same non-qlog canonical locus and (X,ω′) has a qlc center contained in Λ. But
{L(x, y)}(x,y)∈S has the same properties (1)–(3) with respect to (X,ω′); hence, Λ cannot contain
any qlc center of (X,ω′). Contradiction. �

Theorem 5.10 (Cone Theorem). Let (X/S,ω) be a projective quasi-log variety. Let {Rj} be
the ω-negative extremal rays of NE(X/S) that are relatively ample at infinity. Then the following
hold :

(i) NE(X/S) = NE(X/S)ω≥0 + NE(X/S)−∞ +
∑

Rj .
(ii) There are only finitely many Rj’s included in (ω + H)<0, for any relatively ample H ∈

Div(X)R. In particular, the Rj’s are discrete in the half-space ω<0.
(iii) Let F be an ω-negative extremal face of NE(X/S) that is relatively ample at infinity. Then

F is a rational face (in particular, contractible at infinity).

Proof. Assume first that ω ∈ Div(X)Q.

(1) If dimR N1(X/S) ≥ 2, then

NE(X/S) = NE(X/S)ω≥0 + NE(X/S)−∞ +
∑
F

F,

where the F ’s vary among all rational proper ω-negative extremal faces that are relatively
ample at infinity, and the overline denotes the closure with respect to the real topology.

Proof. Denote the right-hand side by B. If equality does not hold, there exists a separating
function M ∈ Div(X) \ {0}, which is not a multiple of ω in N1(X/S), such that M is positive on
B \ {0} but is not relatively nef. Since M belongs to the interior of the dual cone of NE(X/S)ω≥0,
we can scale it so that M = ω + H for a relatively ample Q-Cartier divisor H.

Let r > 1 be the largest real number such that ω + rH is relatively nef but not ample. In
particular, ω + rH is relatively ample on X−∞. By the Rationality and Contraction Theorems, r
is a rational number and the extremal face F �= {0} with the supporting function ω + rH can be
contracted. If F is proper, it is contained in B; hence, M is relatively ample on F . This contradicts
r > 1. Otherwise, ω +rH is trivial and M = r−1

r ω in N1(X/S), which contradicts the choice of M .

(2) We may take only proper rays in (1).

Proof. Let F be a rational proper ω-negative extremal face that is relatively ample at infinity,
and assume that dimF ≥ 2. Let ϕF : X → W be the associated contraction, so that −ω is
ϕF -ample. Applying (1) to X/W , we obtain

F = NE(X/W ) \ {0} =
(

NE(X/W )−∞ +
∑
G

G

)
\ {0},
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where the G’s are the rational proper ω-negative extremal faces of NE(X/W ) that are relatively
ample at infinity. Since ϕF embeds X−∞ into W , NE(X/W )−∞ = 0. The G’s are also ω-negative
extremal faces of NE(X/S) that are contractible at infinity, and dimG < dim F . By induction, we
obtain

NE(X/S) = NE(X/S)ω≥0 + NE(X/S)−∞ +
∑

Rj.

Note that each Rj does not intersect NE(X/S)−∞.

(3) Let A be a relatively ample Cartier divisor on X. Then each Rj is generated by an irreducible
reduced curve Cj, rj = A·Cj

−ω·Cj
is a rational number, and the denominator of rj

a , written in reduced
form, is at most a(d + 1). Indeed, each Rj is contractible, and the statement follows from the
Rationality Theorem applied to the contraction ϕRj .

(4) Let {Hi}�−1
i=1 (where � is the Picard number) be relatively ample Cartier divisors on X that,

together with ω, form a basis over R of N1(X/S). By (3), Rj ∩ {z; −aω · z = 1} is included in the
lattice

{z; −aω · z = 1, Hi · z ∈ (a(d + 1)!)−1Z}.

Therefore, the extremal rays are discrete in the half-space ω<0, and the real closure can be omitted.
We have obtained (i).

(5) We show (ii). Let H ∈ Div(X)R be relatively ample. Since H − ∑�−1
i=1 εiHi is ample for

0 < εi � 1, the Rj ’s included in (ω + H)<0 correspond to some elements of the above lattice for
which

∑�−1
i=1 εiHi · z < 1

a . They are finite.

(6) We show (iii). The vector space V = F⊥ ⊂ N1(X) is defined over Q since F is generated
by some of the Rj’s. There exists a relatively ample divisor H ∈ Div(X) such that F ⊂ (ω +H)<0.
Let 〈F 〉 be the vector space spanned by F , and set

WF = NE(X/S)ω+H≥0 + NE(X/S)−∞ +
∑

Rj �⊆F

Rj.

Then WF is a closed cone, NE(X/S) = WF + F , WF ∩ 〈F 〉 = {0}, and the supporting functions
of F are the elements of V that are positive on WF \ {0}. This is a nonempty open set and thus
contains a rational element that, after scaling, gives a relatively nef Cartier divisor L such that
F = L⊥ ∩ NE(X/S). Therefore, F is rational.

The general case when ω ∈ Div(X)R can be reduced to the rational case via the following trick:
If H ∈ Div(X)R is relatively ample and ω + H ∈ Div(X)Q, we can write H = E + H ′, where
H ′ ∈ Div(X)R is relatively ample and (X,ω′ := ω + E) is a quasi-log variety with the same qlc
centers and non-qlog canonical locus as (X,ω). Therefore, ω + H = ω′ + H ′, ω′ ∈ Div(X)Q, and
(X,ω)−∞ = (X,ω′)−∞. In (ii), we may assume that ω + H ∈ Div(X)Q, and in (iii) we can replace
ω by ω + H ∈ Div(X)Q. As for (i), we have

NE(X/S) = NE(X/S)ω+H≥0 + NE(X/S)−∞ +
∑

(ω+H)·Rj<0

Rj

since the same holds for ω′ + H ′ = ω + H. Letting H converge to 0, we obtain (i) using (ii). �
Corollary 5.11. Let X/S be a projective quasi-log variety such that ω is relatively nef

on X−∞. If ω is not relatively nef, there exists an ω-negative extremal ray that is relatively ample
at infinity.
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6. QUASI-LOG FANO CONTRACTIONS

We specialize the results of the previous section to the equivalent of Fano contractions in our
category.

Definition 6.1. A quasi-log Fano contraction X/S is a relative projective quasi-log variety
X/S such that −ω is relatively ample and OS = π∗OX .

Theorem 6.2. A projective quasi-log Fano contraction X/S has only finitely many ω-negative
extremal rays Rj that are relatively ample at infinity, and NE(X/S) = NE(X/S)−∞ +

∑
Rj .

Furthermore, NE(X/S) is a closed rational polyhedral cone spanned by the Rj ’s if X−∞/S has
at most finite fibers.

Lemma 6.3. Assume that X/T → S/T is a diagram of projective morphisms such that X/S
is a quasi-log Fano contraction.

(i) There exists an ω-negative extremal face F of NE(X/T ) that is contractible at infinity and
such that X/T → S/T is the contraction of the face F .

(ii) Let L ∈ Div(X)K such that L ≡ 0/S. Then there exists H ∈ Div(S)K such that L ∼K π∗H
if one of the following holds:

K = Z: mL|X−∞ is relatively base point free for m � 0.

K = Q: L|X−∞ is relatively semiample.

K = R: X−∞/S has at most finite fibers.

Corollary 6.4. Let X/S be a quasi-log Fano contraction.

(i) Assume that L ∈ Div(X)Q is relatively nef and L|X−∞ is relatively semiample. Then L is
relatively semiample.

(ii) Assume that L ∈ Div(X)R is relatively nef and L|X−∞ is relatively ample. Then L is
relatively semiample.

Proof. Statement (i) follows from the Base Point Free Theorem. For (ii), assume that L ∈
Div(X)R is relatively nef and L|X−∞ is relatively ample. If [L] = 0 ∈ N1(X/S), we just apply
Lemma 6.3(ii).

If [L] �= 0 ∈ N1(X/S), F := L⊥ ∩ NE(X/S) is a nontrivial face. By assumption, F ∩
(NE(X/S)ω≥0 + NE(X/S)−∞) = {0}. Theorem 5.10(iii) and the Contraction Theorem imply
that F is an ω-negative extremal face contractible at infinity and the contraction ϕF : X/S → T/S
exists. We have L ≡ 0/T and X−∞/T is an embedding. By Lemma 6.3(ii), L ∼R π∗H for some
relatively ample H ∈ Div(T )R; i.e., L is relatively semiample. �

Remark 6.5 (cf. Artin’s numerical criterion). Let π : X → S be a projective birational mor-
phism of normal varieties, and let D be an effective Q-Cartier divisor on X such that the following
hold:

• (X,B) is a log variety.

• −D is π-ample.

• For every subscheme Y ⊂ X supported by Supp(D), any π-nef Cartier divisor L ∈ Div(Y )
is π-semiample.

Then any π-nef Cartier divisor L on X is π-semiample. Indeed, (X/S,B + rD) is a quasi-log Fano
contraction for r � 0, with non-log canonical locus supported by Supp(D). The claim follows from
Corollary 6.4(i).
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Theorem 6.6. Let π : X → S be a quasi-log Fano contraction, and let P ∈ S be a closed
point.

(i) Assume that X−∞ ∩ π−1(P ) �= ∅ and C is a qlc center such that C ∩ π−1(P ) �= ∅. Then
C ∩ X−∞ ∩ π−1(P ) �= ∅.

(ii) Assume that X has qlog canonical singularities. Then the set of all qlc centers intersecting
π−1(P ) has a unique minimal element with respect to inclusion.

Proof. Let C be a qlc center of X such that P ∈ π(C) ∩ π(X−∞). By Theorem 4.4 (with
L = 0), X ′ := C ∪X−∞ is a quasi-log variety and the restriction map π∗OX → π∗OX′ is surjective.
Since OS = π∗OX , X−∞ and C intersect over a neighborhood of P .

Assume now that X−∞ = ∅, and let C1, C2 be two qlc centers of X such that P ∈ π(C1)∩π(C2).
The union X ′ = C1 ∪ C2 is a quasi-log variety, and the same argument implies the surjectivity of
the restriction map π∗OX → π∗OX′ . Therefore, C1 and C2 intersect over P . Furthermore, the
intersection C1 ∩ C2 is a union of qlc centers by Proposition 4.8. By induction, there exists a
unique qlc center CP over a neighborhood of P such that CP ⊆ C for every qlc center C with
P ∈ π(C). �

7. THE LOG BIG CASE

For certain applications, we need to weaken the projectivity assumption in the Base Point Free
Theorem.

Definition 7.1 (M. Reid). Let X/S be a proper quasi-log variety. A relatively nef R-Cartier
divisor H on X is called log big if H|C is relatively big for every qlc center C of X.

Theorem 7.2 (cf. [5, 6]). Let X/S be a proper quasi-log variety, and let L be a relatively nef
Cartier divisor on X with the following properties:

(i) qL − ω is relatively nef and log big for some q ∈ R.

(ii) OX−∞(mL) is relatively generated for m � 0.

Then OX(mL) is π-generated for m � 0.

The proof is parallel to Theorem 5.1. We just need the appropriate equivalent of Theorem 4.4:

Theorem 7.3. Let X/S be a proper quasi-log variety, and let X ′ be the union of X−∞ with
a union of some qlc centers of X. Let L be a Cartier divisor on X such that L − ω is relatively
nef and log big. Then IX′ ⊗OX(L) is π∗-acyclic.

This is a formal consequence of the log big extension of Theorem 3.2, which we prove below by
reduction to the ample case.

Theorem 7.4. Let f : (Y,B) → X be a proper morphism from an embedded normal crossing
pair, such that B is a boundary. Let L ∈ Div(Y ), let π : X → S be a proper morphism, and assume
that L ∼R K + B + f∗H for a nef and log big/S R-Cartier divisor H on X. Then

(i) every nonzero local section of Rqf∗OY (L) contains in its support the f -image of some strata
of (Y,B);

(ii) Rqf∗OY (L) is π∗-acyclic.

Proof. (1) Assume first that each stratum of (Y,B) dominates some irreducible component
of X. Taking the Stein factorization, we may assume that f has connected fibers. Assume then
that X is connected, which implies that X is irreducible and each stratum of (Y,B) dominates X.
By Chow’s lemma, there exists a proper birational morphism µ : X ′/S → X/S such that X ′/S is
projective. Replacing Y by some blow-up, we may assume that f factors through µ: f = µ ◦ g.
Set F = Rqg∗OY (L). Since µ∗H is nef and big over S, and X ′/S is projective, we may write
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µ∗H = E + A, where E is an effective R-divisor such that B + g∗E has multicrossing support,
�B� = �B + g∗E�, and A ∈ Div(X ′) is ample over S. From the ample case, we infer that F is µ∗-
and (π ◦ µ)∗-acyclic and satisfies (i). Therefore, Rqf∗OY (L) � µ∗F satisfies (i) and (ii).

(2) We treat the general case by induction on dimX. We may assume that Y = Y ′ ∪ Y ′′ is
a decomposition of Y such that Y ′ is the union of all strata of (Y,B) that are not mapped to
irreducible components of X. Since f : (Y ′′, B′′) → X and L′′ satisfy the assumption in (1), the
long exact sequence of 0 → j∗OY ′′(L′′) → OY (L) → OY ′(L) → 0 with respect to f∗ breaks up into
short exact sequences

0 → Rqf∗OY ′′(L′′) → Rqf∗OY (L) → Rqf∗OY ′(L) → 0.

Since (i) and (ii) hold for the first and third members by case (1) and by induction on dimension,
respectively, they also hold for Rqf∗OY (L). �
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