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The moduli b-divisor of an lc-trivial fibration

Florin Ambro

Abstract

We study positivity properties of the moduli (b-)divisor associated to a relative log pair
(X,B)/Y with relatively trivial log canonical class.

Introduction

In this paper we continue the study of lc-trivial fibrations (X,B)/Y , that is, roughly, relative log
pairs with relatively trivial log canonical class K+B (see [Amb02] for an introduction). This type of
fibration is expected to play a key role in inductive arguments in the (Log) Minimal Model Program.

We briefly explain the inductive idea on an example, which is the prototype of lc-trivial fibrations.
Consider a fibration of projective manifolds f : X → Y such that KX = f∗D, where KX is the
canonical divisor of X and D is a Cartier divisor on Y . It is clear that some of the basic invariants
of X, such as its Kodaira dimension or its plurigenera, are encoded by the divisor D, which is defined
on a variety of dimension strictly less than that of X. In the ideal case when D is the canonical
divisor of Y , results in the classification theory of Y imply analogous results in the classification
theory of X (e.g. the base point freeness of the pluricanonical linear systems, or the finite generation
of the canonical ring). In general, D is different from the canonical divisor of Y due to the existence of
singular fibers of f and the variation of the generic fiber of f in its moduli (in fact, D = KY if
and only if f is a product after a finite étale base change, by Theorem 4.7). What is always true
is that D is the log canonical divisor of a logarithmic variety (see Theorem 0.2), and the inductive
argument sketched above is valid in the larger category of logarithmic varieties.

Given an lc-trivial fibration f : (X,B) → Y , there exists a canonical decomposition of Kodaira
type

K + B ∼Q f∗(KY + BY + MY ),

where BY and MY are Q-divisors on Y , called the discriminant and moduli Q-divisors
(Kawamata [Kaw97, Kaw98]). The discriminant measures the singularities of the log pair (X,B)
over codimension-1 points of Y , whereas the moduli Q-divisor is expected to define the rational
map from Y to the moduli space of the generic fiber. As explained in [Amb02], the following two
properties are desirable for applications: inversion of adjunction and (effective) semi-ampleness.
Inversion of adjunction (or, equivalently, Shokurov’s BP Conjecture [Sho03]) was established in
[Amb02]: the log pairs (X,B) and (Y,BY ) have the same type of singularities if Y is sufficiently
high in its birational class. As for the moduli part, it is known that MY is numerically effective
(nef) if Y is sufficiently high in its birational class [Kaw98]. Semi-ampleness predicts that in fact
the linear system |kMY | is free of base points if k is large and divisible and Y is sufficiently high in
its birational class.

The main results of this paper are two partial answers to the semi-ampleness of the moduli part:
(a) if MY is numerically trivial and Y is sufficiently high in its birational class, then MY is a torsion
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Q-divisor (Theorem 3.5); (b) if the horizontal part of B is effective and Y is sufficiently high in its
birational class, then there exists a contraction h : Y → Z to a projective variety Z and a nef and
big Q-divisor A on Z such that MY ∼Q h∗A (Theorem 3.3).

One application of Theorem 3.3 is a logarithmic version of a result of Kawamata [Kaw85]
(the Abundance Conjecture and Ueno’s K Conjecture for minimal models with numerically trivial
canonical class), as follows.

Theorem 0.1. Let (X,B) be a projective log variety with Kawamata log terminal singularities
such that K + B is numerically trivial. Then the following hold.

(1) There exists a positive integer b such that b(K + B) ∼ 0.
(2) The Albanese map X → Alb(X) is a surjective morphism, with connected fibers. Furthermore,

there exist a finite étale covering A′ → Alb(X), a projective log variety (F,BF ), and an
isomorphism over A′ such that

(X,B) ×Alb(X) A′ � ��

��������������
(F,BF ) × A′

�������������

A′

It is interesting to compare this with results of Campana, Demailly, Peternell, Schneider, Serrano,
and Zhang [DPS93, Zha96, PS98, CPZ03] on the structure of the Albanese map of projective
manifolds with nef anticanonical class. By Theorem 0.1, the Albanese map of a nonsingular
projective variety with semi-ample anticanonical class −K is an étale fiber bundle.

Another application of Theorem 3.3 is a generalization of a result of Nakayama [Nak88] (see also
Fujita [Fuj86]), as follows.

Theorem 0.2. Let (X,B) be a projective log variety with Kawamata log terminal singularities, let
f : X → Y be a contraction to a proper normal variety Y , and let ω be a Q-Cartier divisor on Y
such that

K + B ∼Q f∗ω.

Then there exists a Q-Weil divisor BY such that (Y,BY ) is a log variety with Kawamata log terminal
singularities and ω ∼Q KY + BY .

Another application is the logarithmic version of the main result in [Amb03]: modulo the Log
Minimal Model Program and the Log Abundance Conjecture for smaller dimensional varieties, the
Log Abundance Conjecture is reduced to the case of log minimal models of maximal nef dimension
(Theorem 4.3).

The techniques we use are due to Fujita [Fuj78a, Fuj78b], Viehweg [Vie83a, Vie83b] and
Kawamata [Kaw83, Kaw85]. In fact, Theorem 3.3 can be deduced from [Kaw85, Theorem 1.1]
in the case in which the generic fiber Xη has canonical singularities and Bη = 0 (see Fujino and
Mori [FM00, Fuj03], or [Amb03]). Thus, we simply extend their methods to deal with the case of
varieties with boundary.

1. Preliminary

Since we use transcendental methods, the base field is assumed to be the field of complex numbers
k = C. However, the main results extend to the case when k is an algebraically closed field of
characteristic 0, by Lefschetz’s principle.

We use the same notation and terminology as in [Amb02]. Recall that a log variety with
Kawamata log terminal singularities is a normal variety X endowed with an effective Q-Weil
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divisor B satisfying the following two properties: (a) some integer multiple of the log canonical
class K +B is a Cartier divisor; (b) for any resolution of singularities µ : Y → X, the Q-Weil divisor
KY −µ∗(K+B) has coefficients less than 1 (the same top rational differential form ω∈∧dim(X)Ω1

k(X)/k

is used to define the canonical class KY = (ω)Y of Y , for every birational model Y of X).
Throughout this paper, we only consider complex-analytic spaces which are associated to

complex algebraic varieties (a general definition can be found in [Hir64, pp. 119–120]). To fix the
notation, let X

π→ S be a morphism of complex-analytic spaces. The tangent sheaf TX/S = (Ω1
X/S)∨

is the dual of the sheaf of relative Kähler differentials Ω1
X/S . If X is smooth and E is a divisor with

simple normal crossings on X, Ω1
X〈E〉 is the locally free sheaf of differentials with logarithmic poles

along E, Ω1
X/S〈E〉 is defined by the exact sequence

π∗Ω1
S → Ω1

X〈E〉 → Ω1
X/S〈E〉 → 0,

and the logarithmic tangent sheaf TX/S〈−E〉 is defined as the dual of Ω1
X/S〈E〉 (it coincides with

the sheaf of derivations of X which preserve IE). For the deformation theory of a complex-analytic
space, or that of a smooth complex-analytic space endowed with a simple normal crossings divisor,
we refer the reader to [GK64, Gra74, Kaw78].

For the rest of this section, we collect some results of Kawamata [Kaw83, Kaw85], Kollár [Kol87]
and Viehweg [Vie83a, Vie83b], with minor modifications.

1.1 Equivariant resolutions
Let X be a complex-analytic space which is countable at infinity and let Z ⊃ Sing(X) be a closed
complex subspace. By Hironaka [Hir77], there exists a proper morphism µ : X ′ → X having the
following properties.

(1) X ′ is smooth and µ induces an isomorphism X ′ \ µ−1(Z) → X \ Z.

(2) µ−1(Z) is a divisor with normal crossings support.

(3) If U, V are open subsets of X and α : U → V is an isomorphism such that α(Z|U ) = Z|V , then
there exists a unique isomorphism α′ making the following diagram commutative:

µ−1(U) α′
��

µ

��

µ−1(V )

µ

��
U

α �� V

(4) Let P be the pseudo-group of all the local isomorphisms α as in (3). Then µ is obtained as the
composition of blowing-ups with closed smooth centers which are invariant under the natural
liftings of P.

We will say that µ is an equivariant resolution of X with respect to Z.

Lemma 1.1. Let X be a normal variety, let R be a reduced Weil divisor on X (possibly zero),
and let X → S be a morphism. Let µ : X ′ → X be an equivariant resolution of X with respect to
Sing(X) ∪ R, and let E be a normal crossings divisor on X ′ such that R ⊆ µ∗E. Then

µ∗TX′/S〈−E〉 = (µ∗Ω1
X′/S〈E〉)∨ ⊆ TX/S .

Proof. Since X is normal and µ is birational, we have inclusions

µ∗TX′/S〈−E〉 ⊆ (µ∗Ω1
X′/S〈E〉)∨ ⊆ TX/S .
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Fix a point x ∈ X and let a ∈ H0(U, (µ∗Ω1
X′/S〈E〉)∨) ⊂ H0(U, TX/S) be a vector field on an

analytic neighborhood U of x. There exists (see [GK64]) a holomorphic one-parameter family
Φ: {s ∈ C; |s| < ε} × U ′ → U satisfying the following properties:

(a) Φ(s1,Φ(s2, x)) = Φ(s1 + s2, x) for |s1|, |s2|, |s1 + s2| < ε;
(b) Φ(0, x) = x for x ∈ U ′;

(c) ax(df) =
d

ds
f(Φ(s, x))|s=0 for x ∈ U ′ and f ∈ OX,x.

The local isomorphisms Φs preserve the singular locus of X. They also preserve R on a big open
subset of X, since µ is birational and R ⊆ µ∗E. Therefore each Φs preserves Sing(X) ∪ R, so Φ
lifts to a one-parameter family in an analytic neighborhood of π−1(x). The corresponding vector
field ã is tangent to the exceptional locus of µ and to the components of E. Then ã is a section of
TX′/S〈−E〉 which lifts a, hence a ∈ µ∗TX′/S〈−E〉.
Lemma 1.2. Let µ : Y → X be a birational morphism, let B be a sheaf on X, and let A be a
torsion-free sheaf on Y . Then we have an exact sequence

0 → Ext1X(B,µ∗A) → Ext1Y (µ∗B,A) → HomX(B,R1µ∗A).

Proof. If we set Homµ(B,A) = HomY (µ∗B,A) = HomX(B,µ∗A), we have two spectral sequences
[Ran89]:

Ep,q
2 = ExtpX(B,Rqµ∗A) =⇒ Extp+q

µ (B,A),
′Ep,q

2 = ExtpY (Lqµ
∗B,A) =⇒ Extp+q

µ (B,A).
The five-term exact sequence of edge homomorphisms of the first spectral sequence is (denote
H i = Extiµ(B,A))

0 → Ext1X(B,µ∗A) → H1 → HomX(B,R1µ∗A) → Ext2X(B,µ∗A) → H2.

Since µ is birational, L1µ
∗B is a torsion sheaf on Y . Since A is torsion-free, we obtain ′E0,1

2 =
HomY (L1µ

∗B,A) = 0. Therefore the second spectral sequence induces an isomorphism
Ext1Y (µ∗B,A) ∼−→ H1.

1.2 The covering trick
Let f : X → S be a smooth projective morphism of nonsingular varieties, and let T be a Q-divisor
on X such that T ∼Q 0 and such that the fractional part of T has normal crossings support
relative to f . Let ϕ be a rational function on X such that (ϕ) + mT = 0 (and m is minimal with
this property). Let π : X̃ → X be the normalization of X in k(X)(m

√
ϕ), and let ν : V → X̃ be

an equivariant resolution with respect to the singular locus of X̃ . We assume that the morphism
h : V → S is smooth and R2h∗ZV has a global section inducing a polarization on each fiber of h.

X

f

��

X̃
π��

f̃

����
��

��
��

V
ν��

h
�����������������

S

We have an eigensheaf decomposition

h∗KV/S = f̃∗KX̃/S =
m−1⊕
i=0

f∗OX(KX/S + iT �).

In particular, we obtain locally-free sheaves on S:

F (i) := f∗OX(KX/S + iT �).
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The variation of polarized Hodge structure (Rdh∗CV )prim ⊗ OS induces semipositive Hermitian
metrics on each F (i). Let

σi
s : TS,s → Hom(H0(Xs,F (i)

s ),Ext1Xs
(Ω1

Xs
〈Es〉,F (i)

s ))

be the map induced by cup product with the Kodaira–Spencer class

κs : TS,s → Ext1Xs
(Ω1

Xs
〈Es〉,OXs),

where E is the support of the fractional part of T .

Proposition 1.3. The following properties hold.

(i) Viewed as a subbundle of the flat vector bundle (Rdh∗CV )prim ⊗OS , the second fundamental
forms of F (i) and h∗ωV/S are represented by σi and

⊕m−1
i=0 σi, respectively.

(ii) The Hermitian vector bundle F (i) is Griffiths semipositive definite, with curvature

Θi = −(σi)∗ ∧ σi,

where (σi)∗(v) is the adjoint of σi(v̄) with respect to the induced Hodge metrics. The curvature
trace(Θi) of det(F (i)) is semipositive, and Ker(σi

s) ⊂ TS,s consists of the tangent directions
along which trace(Θi) is not positive definite at s.

(iii) The maps σVs , σX̃s
,
⊕m−1

i=0 σi
s and κVs , κX̃s

, κs have the same kernel, respectively.

(iv) Assume S ⊂ S̄ is a nonsingular compactification of S such that S̄ \ S is a simple normal
crossings divisor and Rdh∗CV has unipotent local monodromies along S̄ \ S. Let F̄ (i) be the
Schmid extension of F (i). Then det(F̄ (i)) is a nef invertible sheaf on S̄, and

det(F̄ (i))dim(S) =
∫

S

(√−1
2π

trace(Θi)
)dim(S)

.

Proof. (i) We may shrink S, so that Vs → X̃s is a resolution of singularities for every s ∈ S. We have
an inclusion of Hodge structures Hd(X̃s, C) ⊂ Hd(Vs, C) and Hd,0(X̃s) = Hd,0(Vs), since X̃s has
rational singularities (see [Ste77]). Therefore we have the commutative diagram

TS,s

=

��

�� H1(Vs, TVs)

��

�� Hom(Hd,0(Vs),Hd−1,1(Vs))

TS,s �� H1(X̃s, TX̃s
) �� Hom(Hd,0(X̃s),Hd−1,1(X̃s))

��

where the middle arrow is the tangent map of the blow-down transformation of deformation functors
[Kaw85]. If we identify [Vie83b]

H1(Xs, TXs〈−Es〉) = H1(X̃s, TX̃s
)G,

we also have a commutative diagram:

TS,s

=

��

�� H1(X̃s, TX̃s
)

TS,s �� H1(Xs, TXs〈−Es〉)

��

Therefore the cup product with the Kodaira–Spencer class preserves the eigenspaces, so that the
infinitesimal period map

σVs : TS,s → Hom(Hd,0(Vs),Hd−1,1(Vs))
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admits the decomposition σVs =
⊕m−1

i=0 σi
s. This is the same as the action of the Gauss–Manin

connection on (Rdh∗CV )prim ⊗ OS , hence σi
s is the second fundamental form of F (i) in

(Rdh∗CV )prim ⊗OS .
(ii) See [Gri70].
(iii) Consider the infinitesimal period maps

σVs : TS,s → Hom(Hd,0(Vs),Hd−1,1(Vs)),

σX̃s
: TS,s → Hom(Hd,0(X̃s),Hd−1,1(X̃s)),

σi
s : TS,s → Hom(H0(Xs,F (i)

s ),Ext1Xs
(Ω1

Xs
〈Es〉,F (i)

s ))

and the Kodaira–Spencer deformation classes

κVs : TS,s → H1(Vs, TVs),

κX̃s
: TS,s → H1(X̃s, TX̃s

),

κs : TS,s → H1(Xs, TXs〈−Es〉).
The proof of (i) gives that σVs , σX̃s

,
⊕m−1

i=0 σi
s and κX̃s

, κs have the same kernel, respectively.
Since ν is equivariant, κVs and κX̃s

have the same kernel by [Kaw85, Lemma 6.2].
(iv) This follows from [Kaw83] and [Kol87].

2. The period map

Throughout this section, we fix the following setup:

(a) (X,B) is a log variety with Kawamata log terminal singularities, such that K + B ∼Q 0;
(b) f : X → S is a projective contraction to a nonsingular algebraic variety S;
(c) µ : Y → X is a resolution of singularities, KY + BY = µ∗(K + B) is the log pullback, and E

is the support of the fractional part of BY . We assume that E has simple normal crossings
support and µ∗TY 〈−E〉 is a reflexive sheaf (such a resolution exists by Lemma 1.1);

(d) the family (Y,E) → S has relative simple normal crossings over an open subset of S.
Let κs : TS,s → H1(Ys, TYs〈−Es〉) be the induced Kodaira–Spencer class.

We are only interested in the induced log variety (Xη, Bη) defined over k(S). Hence, we will
shrink S to a Zariski open subset without further notice.

Proposition 2.1. Let b be the minimal positive integer such that b(K + B) ∼ 0 over the general
point of S, and choose a rational function ϕ with b(K+B) = (ϕ). Let π : Ỹ → Y be the normalization
of Y in k(Y )( b

√
ϕ), and let ν : V → Ỹ be an equivariant resolution with respect to the singular

locus of Ỹ :

(Y,BY )

µ

��

Ỹ�� V

h

		��
��

��
��

��
��

��
��

��
��

�
��

(X,B)

f

��
S

Let κVs be the induced Kodaira–Spencer class of V → S, and let

σVs : TS,s → Hom(Hd,0(Vs),Hd−1,1(Vs)),

σ1
s : TS,s → Hom(H0(Ys, −BYs�),Ext1Ys

(Ω1
Ys
〈Es〉,OYs(−BYs�)))
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be the maps induced by cup product with κVs and κs, respectively, where d = dim(X/S).
The projective contraction h is smooth over an open subset S0 of S. Let Φ be the period map
associated to the variation of polarized Hodge structure (Rdh∗CV )prim ⊗OS0.

Then the maps κs, σ
1
s , κVs , σVs have the same kernel for general s ∈ S, equal to TΦ−1(Φ(s)),s ⊂ TS,s.

Proof. (1) Since (Xs, BXs) is a log variety with Kawamata log terminal singularities for general s,
we have an isomorphism

OXs

∼−→ µs∗OYs(−BYs�).
In particular, the inclusion OYs → OYs(−BYs�) induces an isomorphism of global sections and
identifies σ1

s with the composition

TS,s → Ext1Ys
(Ω1

Ys
〈Es〉,OYs)

λ→ Ext1Ys
(Ω1

Ys
〈Es〉,OYs(−BYs�)).

(2) Ker(λ) ⊂ Ker(Ext1Ys
(Ω1

Ys
〈Es〉,OYs) → Ext1Xs

(µs∗Ω1
Ys
〈Es〉,OXs)). Indeed, OYs(−BYs�) is

µs∗-acyclic by Kawamata–Viehweg vanishing. Since Xs has rational singularities, OYs is µs∗-acyclic
as well. The natural homomorphism µ∗

sµs∗Ω1
Ys
〈Es〉 → Ω1

Ys
〈Es〉 induces the following commutative

diagram.

Ext1Ys
(Ω1

Ys
〈Es〉,OYs) ��

��

Ext1Ys
(Ω1

Ys
〈Es〉,OYs(−BYs�))

��
Ext1Ys

(µ∗
sµs∗Ω1

Ys
〈Es〉,OYs) �� Ext1Ys

(µ∗
sµs∗Ω1

Ys
〈Es〉,OYs(−BYs�))

Ext1Xs
(µs∗Ω1

Ys
〈Es〉,OXs) ��

��

Ext1Xs
(µs∗Ω1

Ys
〈Es〉, µs∗OYs(−BYs�))

��

The lower vertical arrows are isomorphisms by Lemma 1.2, and the bottom horizontal arrow is
an isomorphism by OXs = µs∗OYs(−BYs�). This implies the claim.

(3) Ker(κs) = Ker(σ1
s) ⊆ Ker(κXs) (the inclusion is an equality if E is exceptional). Indeed, the

inclusion Ker(κs) ⊆ Ker(σ1
s) is clear. Conversely, consider a tangent vector t ∈ Ker(σ1

s), inducing a
first-order infinitesimal deformation of (Ys, Es):

(Ȳs, Ēs) ��

µ̄s

��

(Y,E)

µ

��
X̄s

f̄s

��

�� X

f

��
Speck[ε] �� S

The class κs(t) is represented by the short exact sequence

0 → OYs → Ω1
Ȳs
〈Ēs〉 ⊗ OYs → Ω1

Ys
〈Es〉 → 0.

By (2), the short exact sequence

0 → OXs → µs∗(Ω
1
Ȳs
〈Ēs〉 ⊗ OYs) → µs∗Ω

1
Ys
〈Es〉 → 0
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admits a splitting u ∈ HomXs(µs∗(Ω1
Ȳs
〈Ēs〉⊗OYs),OXs). It is enough to lift u to Ys. We may assume

(cf. [Kaw85, Lemma 6.1]) that the horizontal arrows are injective and the vertical arrow is surjective
in the diagram below.

HomOXs
(µs∗(Ω1

Ȳs
〈Ēs〉 ⊗ OYs),OXs) �� HomOXs

(µ∗Ω1
Y 〈E〉 ⊗ OXs ,OXs)

HomOX
(Ω1

X ,OX) HomOX
(µ∗Ω1

Y 〈E〉,OX )

��

��

Fix a point x ∈ Xs. Then u lifts to a local section ū of (µ∗Ω1
Y 〈E〉)∨ near x. Since µ∗TY 〈−E〉

is reflexive, we have µ∗TY 〈−E〉 = (µ∗Ω1
Y 〈E〉)∨. Therefore ū lifts to a section of TY 〈−E〉 in a

neighborhood of µ−1(x). In particular, u lifts to a local splitting of κs(t) in a neighborhood of
µ−1(x). Local liftings of u are unique, hence they glue to a global splitting of κs(t). Therefore
t ∈ Ker(κs).

The inclusion Ker(κs) ⊆ Ker(κXs) follows from the following commutative diagram.

0 �� OXs
�� µs∗(Ω1

Ȳs
〈Ēs〉 ⊗ OYs) �� µs∗Ω1

Ys
〈Es〉 �� 0

0 �� OXs
��

=

��

Ω1
X̄s

⊗OXs
��

��

Ω1
Xs

��

��

0

(4) The natural inclusion Ker(κs) ⊆ Ker(
⊕b−1

i=0 σi
s) ⊆ Ker(σ1

s) and Proposition 1.3, part (iii)
imply that the maps κs, κỸs

, κVs , σ
1
s , σỸs

, σVs have the same kernel, for general s ∈ S. The inclusions

Ker(κVs) ⊆ Ker(dΦ∗) ⊆ Ker(σVs)

imply that the common kernel is the tangent space at s of the fiber Φ−1(Φ(s)) of Φ.

Theorem 2.2. There exist dominant morphisms τ : S̄ → S and � : S̄ → S!, with τ generically finite
and S̄, S! nonsingular, and there exist a log variety (X !, B!) with KX! + B! ∼Q 0 and a projective
contraction f ! : X ! → S!

(X,B)

f

��

(X !, B!)

f !

��
S S̄

τ�� � �� S!

satisfying the following properties:

(i) there exists an open dense subset U ⊂ S̄ and an isomorphism

(X,B) ×S S̄|U � ��



�����������
(X !, B!) ×S! S̄|U

��������������

U

(ii) κs! is injective for general points s! ∈ S!.

Proof. We may assume that h : V → S is a smooth projective morphism. Let S ⊂ S̄ be a non-
singular compactification with simple normal crossing boundary. By [Gri70], the period map Φ of
the variation of polarized Hodge structure (Rdh∗CV )prim⊗OS extends to a proper analytic morphism
defined on an open subvariety of S̄. By [Kaw83], Φ is bimeromorphic to a rational map

Φ: S → S!

392



The moduli b-divisor

and we may further shrink S so that Φ is regular everywhere on S. After we replace S by an étale
open set, the following properties hold:

(a) (Y,E) → S is a smooth relative pair and µs∗OYs = OXs for every s ∈ S;

(b) Ext1Ys
(Ω1

Ys
〈Es〉,OYs) and Ext1Xs

(Ω1
Xs

,OXs) have constant dimension for s ∈ S;

(c) Ker(κs) = TΦ−1(Φ(s)) for every s ∈ S;

(d) Φ: S → S! has a section i : S! → S.

By base change via the section i, we induce a family on S!:

(Y,BY )

µ

��

(Y !, BY !)

µ!

��
(X,B)

f

��

(X !, B!)

f !

��
S

Φ �� S!

According to Proposition 2.1 and its proof, the families (Y,E) → S and X → S are first-order
infinitesimally trivial when restricted to the fibers of Φ. The same holds for the map Y → X over S,
by (a) (see [Ran89]). By [Gra74] and [Kaw78], the family

(Y,E) → X → S

is locally trivial when restricted to the fibers of Φ. Consider the subfunctor of

IsomS(X,X ! ×S! S) × IsomS((Y,E), (Y !, E!) ×S! S),

making the obvious diagrams commutative. This subfunctor is representable by a scheme I/S, and
the map I → S is surjective from the above considerations. After replacing S (and S! accordingly)
by an étale open subset, we may assume that I/S has a section. Consequently, we obtain global
isomorphisms as below.

(Y,E) ��

��

(Y !, E!) ×S! S

��
X

��

�� X ! ×S! S

��
S

= �� S

Since (X,B) has Kawamata log-terminal singularities and B is effective, we have B = µ∗E and
B!×S! S = (µ!×S! 1S)∗(E!×S! S). Therefore X → X !×S! S is in fact an isomorphism of pairs over S

(X,B) ∼−→ (X !, B!) ×S! S.

By (c), the Kodaira–Spencer class κs! is injective for s! ∈ S!.

3. Lc-trivial fibrations

Recall [Amb02] that an lc-trivial fibration f : (X,B) → Y consists of a contraction f : X → Y of
proper normal varieties and a log pair (X,B), subject to the following conditions:

(1) (X,B) has Kawamata log terminal singularities over the generic point of Y ;

(2) rank f∗OX(A(X,B)�) = 1, where A(X,B) is the discrepancy R-b-divisor of (X,B);
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(3) there exist a positive integer r, a rational function ϕ ∈ k(X)× and a Q-Cartier divisor D on
Y such that

K + B +
1
r
(ϕ) = f∗D.

The lc-trivial fibration f : (X,B) → Y induces Q-b-divisors B and M of Y , called the discrimi-
nant and moduli Q-b-divisor respectively. By [Amb02, Theorem 0.2], the moduli Q-b-divisor is b-nef.
This means that there exists a proper birational model Y ′ of Y such that M = MY ′ and MY ′ is a
nef Q-Cartier divisor.

Proposition 3.1. Let f : (X,B) → Y be an lc-trivial fibration. Let � : Y ′ → Y be a surjective
morphism from a proper normal variety Y ′, and let f ′ : (X ′, BX′) → Y ′ be an lc-trivial fibration
induced by base change.

(X,B)

f

��

(X ′, BX′)
�X��

f ′

��
Y Y ′���

Let M and M′ be the corresponding moduli Q-b-divisors. Then

�∗M = M′.

Proof. (1) To define the induced lc-trivial fibration, we may assume that X ′ is the normalization
of the main component of X ×Y Y ′. Also, we may assume that X is nonsingular. Then there
exists a canonical divisor KX′ on X ′ such that A = KX′ − �∗XK is an f ′-vertical Weil divisor.
Define BX′ = �∗XB − A, so that

KX′ + BX′ +
1
r
(�∗Xϕ) = f ′∗(�∗D).

The moduli Q-b-divisor M′ of the lc-trivial fibration (X ′, BX′) is independent of the above choice
of KX′ , by [Amb02, Remark 3.3].

(2) We have �∗M = M′ if � is generically finite. This is clear if � is birational. If � is a finite
morphism, �∗M = M′ by [Amb99, Theorem 3.2] and [Amb02, Remark 3.3].

(3) The general case follows from (1) and the compatibility with base change of the canon-
ical extension of a variation of Hodge structure with unipotent local monodromies at infinity
(same argument as in the proof of [Amb02, Theorem 2.7]).

Definition 3.2. A Q-b-divisor M of Y is called b-nef and good if there exists a proper birational
model Y ′ of Y , endowed with a proper contraction h : Y ′ → Z, such that:

(1) MY ′ ∼Q h∗H, for some nef and big Q-divisor H of Z;
(2) M = MY ′ .

Theorem 3.3. Let f : (X,B) → Y be an lc-trivial fibration such that the geometric generic fiber
Xη = X ×Y Spec(k(Y )) is a projective variety and Bη is effective. Then there exists a diagram

(X,B)

f

��

(X !, B!)

f !

��
Y Ȳ

τ�� � �� Y !

satisfying the following properties:

(i) f ! : (X !, B!) → Y ! is an lc-trivial fibration;

(ii) τ is generically finite and surjective and � is surjective;
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(iii) there exists a nonempty open subset U ⊂ Ȳ and an isomorphism

(X,B) ×Y Ȳ |U



�����������
� �� (X !, B!) ×Y ! Ȳ |U

��������������

U

(iv) let M,M! be the corresponding moduli Q-b-divisors. Then M! is b-nef and big and τ∗M =
�∗(M!).

In particular, the moduli Q-b-divisor M is b-nef and good.

Proof. Note that the restriction of f : (X,B) → Y to an appropriate open subset of Y satisfies the
assumptions of § 2.

(1) Assume that κs is injective for sufficiently general points s ∈ Y . Then M is b-nef and big.
Indeed, let µ : X ′ → X be an equivariant resolution of X with respect to Sing(X) ∪ Supp(B).

Let X̃ ′ → X ′ be the normalization of X ′ in k(X ′)( b
√

ϕ), let V → X̃ ′ be an equivariant resolution
with respect to the singular locus of X̃ ′, and let f ′ : X ′ → Y be the induced morphism:

X ′

µ

��

X̃ ′�� V��

h

��		
		

		
		

		
		

		
		

		
	

X

f
��

Y

After a generically finite base change of Y , we may assume that M descends to Y and V/Y is bi-
rational to V ′/Y which has simple normal crossings degeneration and is semistable in codimension 1.
Under these assumptions, we infer by [Amb02, Lemma 5.2] that MY is a nef Cartier divisor and
OY (MY ) is isomorphic to the Schmid extension

F̄ (1) = f ′
∗OX′(−BX′ + f ′∗BY + f ′∗MY �).

By Proposition 2.1, σ1
s and κs have the same kernel, hence σ1

s is injective. By Proposition 1.3, the
invertible sheaf F̄ (1) has positive self-intersection. Therefore MY is a nef and big Cartier divisor,
hence M = MY is b-nef and big.

(2) We may assume that the base space Y is nonsingular. By Theorem 2.2, there exists a diagram

(X,B)

f

��

(X !, B!)

f !

��
Y Ȳ

τ�� � �� Y !

satisfying the following properties:

(a) τ is generically finite and surjective and � is surjective;

(b) f ! : (X !, B!) → Y ! is an lc-trivial fibration;

(c) there exists a nonempty open subset U ⊂ Ȳ and an isomorphism

(X,B) ×Y Ȳ |U



�����������
� �� (X !, B!) ×Y ! Ȳ |U

��������������

U
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The moduli Q-b-divisor M! is b-nef and big, by (1). Let f̄ : X̄ → Ȳ be a contraction which is
birationally induced by both f and f !, and let (X̄/Ȳ ,BX̄) and (X̄/Ȳ ,B!

X̄
) be the lc-trivial fibrations

induced by base change. From (c), there exists a Q-Cartier divisor L on Ȳ such that B!
X̄

= BX̄ +f̄∗L.
Therefore the lc-trivial fibrations (X̄/Ȳ ,BX̄) and (X̄/Ȳ ,B!

X̄
) have the same moduli Q-b-divisor

(see [Amb02, Remark 3.3]). We conclude by Proposition 3.1 that τ∗(M) = �∗(M!).

Proposition 3.4. Let f : X → Y be a morphism of projective manifolds, and let ΣY ⊂ Y be a
simple normal crossings divisor such that:

(i) f is smooth over Y \ ΣY ;

(ii) f is semistable over codimension-1 points of Y .

Let L ⊂ f∗ωX/Y be a direct summand invertible sheaf such that L ≡ 0. Then L⊗r � OX for some
positive integer r.

Proof. Consider the variation of polarized Hodge structure of weight d

H = Rdf∗CX0 ⊗OY 0 ,

where Y 0 = Y \ ΣY and d = dim(X/Y ). The sheaf

L|Y 0 ⊂ f∗ωX/Y |Y 0 = F dH

has an induced Hermitian metric h with semipositive curvature form Θ. We claim that the curvature
is trivial. Indeed, let v ∈ TY,s be a tangent vector at a point s ∈ Y 0. There exists a projective curve
C ⊂ Y such that TC,s = Cv, and let ν : Cν → C be its normalization. Since the local monodromies
of H at infinity are unipotent by assumption, we infer by [Kaw81] that

deg(L|C) =
√−1
2π

∫
ν−1(Y 0)

ν∗Θ.

Since L is numerically trivial, we have ν∗Θ = 0. Since ν is an isomorphism near s, we conclude that
v lies is a null direction of Θ.

Therefore Θ is trivial, i.e. L|Y 0 ⊂ H is a local subsystem. By Deligne, there exists a positive
integer r such that (L|Y 0)⊗r is a trivial local system. By [Kaw81], f∗ωX/Y is the canonical extension
of f∗ωX/Y |Y 0 . The same property holds for its direct summand L. Since the local monodromies are
unipotent, the canonical extension commutes with tensor products. Therefore L⊗r � OX .

Theorem 3.5. Let f : (X,B) → Y be an lc-trivial fibration. If M is b-numerically trivial, then
M ∼Q 0.

Proof. This is similar to the proof of [Amb02, Theorem 0.1]. After a finite base change [Amb02,
Lemma 5.1], we may assume that the induced root fiber space h : V → Y is semistable in codimen-
sion 1 and M descends to Y . By construction, the invertible sheaf OY (MY ) ⊂ h∗ωV/Y is a direct
summand, and MY ≡ 0.

We conclude by Proposition 3.4 that MY is torsion. Therefore M is torsion.

4. Applications

Theorem 4.1. Let (X,B) be a projective log variety with Kawamata log terminal singularities, let
f : X → Y be a contraction to a proper normal variety Y , and let ω be a Q-Cartier divisor on Y
such that

K + B ∼Q f∗ω.

Then there exists a Q-Weil divisor BY such that (Y,BY ) is a log variety with Kawamata log terminal
singularities and ω ∼Q KY + BY .
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Proof. We may write K + B + (1/r)(ϕ) = f∗ω, where r is a positive integer and ϕ is a rational
function on X. Thus, f : (X,B) → Y is an lc-trivial fibration. Denote by B and M the induced
discriminant and moduli Q-b-divisors. The assumptions of Theorem 3.3 are satisfied, so we may
find a high resolution σ : Y ′ → Y such that M = MY ′ and

MY ′ ∼Q h∗A,

where h : Y ′ → Z is a contraction to a normal projective variety Z and A is a nef and big divisor
on Z. Consider the lc-trivial fibration induced by base change with σ:

(X,B)

f

��

(X ′, BX′)ν��

f ′

��
Y Y ′σ��

Then σ∗ω = KY ′ + BY ′ + MY ′ . Since M descends to Y ′, inversion of adjunction holds for f ′

(see [Amb02, Theorem 3.1]). Therefore (Y ′,BY ′) is a log pair with Kawamata log terminal singu-
larities. We may find an effective Q-divisor E on Y ′ such that MY ′ ∼Q E and (Y ′,BY ′ + E) has
Kawamata log terminal singularities. If we set BY = σ∗(BY ′ + E), then

σ∗(KY + BY ) = KY ′ + BY ′ + E ∼ σ∗ω,

and (Y,BY ) is a log pair with Kawamata log terminal singularities. Since B is effective, BY = σ∗BY ′

is effective. Therefore BY is effective, i.e. (Y,BY ) is a log variety.

Theorem 4.2. Let (X,B) be a projective log variety with Kawamata log terminal singularities
such that K + B ≡ 0. Then K + B ∼Q 0.

Proof. The variety X has rational singularities since (X,B) has Kawamata log terminal singularities.
Therefore the Albanese map of X is a morphism [Kaw85].

We use induction on dim(X). If q(X) = 0, the numerically trivial divisor K + B is certainly
a torsion divisor. Assume now that q(X) > 0. Let f : X → Y be the Stein factorization of the
Albanese map of X. The geometric generic fiber (Xη̄ , Bη̄) satisfies the same properties as (X,B)
and dimXη̄ < dimX. Therefore KXη̄ + Bη̄ ∼Q 0, by induction. In particular, K + B is numerically
trivial and Q-linearly equivalent to an f -vertical divisor.

Therefore we may choose a sufficiently high resolution µ : Y ′ → Y and a diagram induced by
base change

(X,B)

f

��

(X ′, BX′)ν��

f ′

��
Y Y ′��

such that f ′ : (X ′, BX′) → Y ′ is an lc-trivial fibration and every prime divisor on X ′ is exceptional
on X if it is exceptional on Y ′. We have

ν∗(K + B) + f ′∗(B−
Y ′) = f ′∗(KY ′ + B+

Y ′ + MY ′),

where BY ′ = B+
Y ′ − B−

Y ′ is the decomposition of the discriminant on Y ′ into positive and negative
components. The effective Q-divisor f ′∗(B−

Y ′) is exceptional on X, since it is supported by the
negative part of BX′ and by f ′-exceptional divisors.

By [Uen75, Theorem 10.3], κ(Y ′,KY ′)�0. SinceM is b-nef and good, we also have κ(Y ′,MY ′)�0.
Therefore κ(X,K + B) � 0, hence K + B ∼Q 0.

Theorem 4.3. Let (X,B) be a projective log variety with Kawamata log terminal singularities,
such that the log canonical class K + B is nef, of nef dimension n. Assume that the Log Minimal
Model Program and the Log Abundance Conjecture are valid in dimension n.
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Then the linear system |k(K + B)| is base point free for sufficiently large and divisible positive
integers k.

Proof. The argument of [Amb03, Theorem 5.1] is still valid, provided we replace the
references [Kaw85, Theorem 8.2] and [Amb03, Theorem 4.5] with [Kaw85, Theorem 4.2] and
[Amb03, Theorem 3.3], respectively.

For the rest of this section, we generalize some results of Viehweg [Vie83a] and Kawamata [Kaw85]
on Ueno’s K Conjecture [Uen75].

Proposition 4.4. Let f : (X,B) → Y be an lc-trivial fibration of normal projective varieties such
that there exists an isomorphism

Φ: (X,B)|U ∼−→ (F,BF ) × U over U,

where U ⊂ X is a nonempty open subset. Let

Y 0 = Y \ {Sing(Y ) ∪ Supp(BY ) ∪ f(Supp(Bv
−))},

where Bv− is the negative and vertical part of B. Then Φ extends to an isomorphism Φ: (X,B)|Y 0
∼−→

(F,BF ) × Y 0 over Y 0.

Proof. (1) Let E be a prime divisor on X such that codimX(f(E)) � 2. Then f(E) ∩ Y 0 = ∅.
Indeed, the assumption implies M ∼Q 0. In particular, M descends to Y , i.e. inversion of

adjunction [Amb02, Theorem 3.1] holds for f . If B is negative at E, then f(E)∩Y 0 = ∅. Otherwise,
the log discrepancy of (X,B) at the generic point of E is 1 − multE(B) � 1. By inversion of
adjunction, the minimal log discrepancy of (Y,BY ) at the generic point of f(E) is at most 1.
Since B is effective, BY is effective. Since f(E) is a subvariety of codimension at least 2, it must be
contained either in the singular locus of Y , or in the support of BY .

(2) The rational map Φ: X|Y 0 ��� F × Y 0, and its inverse, are isomorphisms in codimension 1.
Moreover, B|Y 0 is a horizontal Q-divisor.

By assumption, Φ is an isomorphism above the generic point of Y 0. By (1), a prime divisor on
X|Y 0 is vertical over Y 0 if and only if it maps onto a prime divisor of Y 0. Therefore we may assume
that Y is a curve, and it suffices to show that Φ induces a birational map XP ��� F × P for every
point P ∈ Y \ Supp(BY ).

We have A(X,B + f∗P ) = A(F × Y,BF × Y + F × BY + F × P ). The log variety

(F × Y,BF × Y + F × P ) = (F,BF ) × (Y, P )

has log canonical singularities near F × P , with F × P the unique lc place over P . Since BY = 0
near P , (X,B+f∗P ) has log canonical singularities near XP , with F ×P the unique lc place over P .
Since B is effective at the components of XP , this implies that XP is a reduced prime divisor and
Φ induces a birational map XP ��� F × P . Moreover, B has multiplicity zero at XP .

(3) We have an induced isomorphism Φ: V1
∼−→ V2, where V1, V2 are big open subsets of X|Y 0

and F × Y 0, respectively. Fix a point on Y 0 with a local chart (∆; t1, . . . , tn). The sections

p∗
∂

∂ti
∈ H0(F × ∆, (p∗Ω1

Y )∨)

lift to vector fields

ai ∈ H0(F × ∆, TF×Y ).

The sheaves TX , TF×Y , (p∗Ω1
Y )∨ and (f∗Ω1

Y )∨ are reflexive, hence Φ induces vector fields

a′i ∈ H0(X|∆, TX)
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which lift

f∗ ∂

∂ti
∈ H0(X|∆, (f∗Ω1

Y )∨).

By [GK64], these vector fields define one-parameter groups of automorphisms in a neighborhood of
the fixed fiber, which in turn define a trivialization of f near the fixed fiber. By construction, the one-
parameter groups of ai and a′i are compatible via Φ. Therefore Φ is an isomorphism near the fixed
fiber.

As for the boundary, note that B|Y 0 is horizontal over Y 0. Since Φ preserves the boundaries
over the generic point of Y 0, the isomorphism Φ: X|Y 0

∼−→ F × Y 0 satisfies Φ(B) = BF × Y 0.

Example 4.5. Let Y be a surface with DuVal singularities. Then the minimal resolution f : X → Y
is an lc-trivial fibration with BY = 0 and M = 0. It is an isomorphism only outside the DuVal
singularities.

Proposition 4.6. Let (X,B) be a proper log variety with Kawamata log terminal singularities,
such that κ(X,K + B) � 0. Let Aut0(X,B) be the connected component of the identity of the
group scheme

Aut(X,B) = {σ ∈ Aut(X);σ∗(B) = B}.
Then Aut0(X,B) is an Abelian variety.

Proof. It is known that Aut0(X) is an algebraic group [Gro62, MO67], so its closed subgroup
Aut0(X,B) is an algebraic group. Assume by contradiction that Aut0(X,B) contains a linear alge-
braic group. Then Aut0(X,B) contains a connected one-dimensional linear group G = Gm or Ga

(see [Ros56]).
The closed subset Sing(X) ∪ Supp(B) is G-invariant. By [Ros56, Theorem 10], there exists a

G-invariant open subset U ⊂ X \ (Sing(X) ∪ Supp(B)) and a G-invariant isomorphism

U
∼−→ G × V,

where G acts on G × V only on the first factor, by translations. In particular, V is nonsingular.
Choose a compactification V ⊂ Y such that Y \V is a simple normal crossings divisor. By Hironaka’s
resolution of singularities, there exists a diagram

X ′
f

��		
		

		
		 g


















X P1 × Y

such that f is an isomorphism over U , g is an isomorphism over G×V , X ′ is proper and nonsingular,
and

f−1(X \ U) = g−1(P1 × Y \ G × V ) =
∑

Ei

is a simple normal crossings divisor on X ′. Let f∗(K + B) = K + BY , and let B+
Y be the positive

part of BY . We have �B+
Y � = 0, since (X,B) has Kawamata log terminal singularities. Since B is

effective, we have
κ(X ′,KX′ + B+

Y ) = κ(X,K + B) � 0.
In particular, κ(P1 × Y, g∗(B+

Y )) � 0. But

(P1 × Y, g∗(B+
Y )) = (P1, BP1) × (Y,BY ),

where BP1 and BY are boundaries supported by P1 \ G and Y \ V , respectively. In particular,
κ(P1,KP1 + BP1) � 0. Since BP1 is a boundary, this implies that G = Gm and BP1 is the reduced
sum of two points. This contradicts �B+

Y � = 0.
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Theorem 4.7. Let f : (X,B) → Y be an lc-trivial fibration such that Xη̄ is projective, B is effective
over a big open subset of Y , BY = 0, and M ∼Q 0. Then there exists a finite Galois covering
τ : Y ′ → Y such that:

(i) τ is étale in codimension 1;

(ii) there exists a nonempty open subset U ⊂ Y ′ and an isomorphism (X,B)×Y Y ′|U ∼−→ (F,BF )×
Y ′|U over U .

Proof. (1) The fibers of f are reduced over a big open subset of Y . Indeed, we may assume that Y
is a curve. Let P ∈ Y be a point and let f∗P =

∑
i miEi. We have

1 = 1 − multP (BY ) � min
i

1 − multEi(B)
mi

� 1
mi

.

Therefore the fiber f∗P is reduced. In particular, there exists a big open subset Y 0 ⊂ Y such that
B is horizontal over Y 0 and f : X|Y 0 → Y 0 is smooth on a big open subset of X|Y 0 .

(2) Since M ∼Q 0, there exist by Theorem 3.3 a generically finite morphism τ : W → Y from
a nonsingular proper variety W and a nonempty open subset U ⊆ W such that (X,B) ×Y W |U
and (F,BF ) × W |U are isomorphic over U . We may assume that the field extension k(W )/k(Y ) is
Galois and G = Gal(k(W )/k(Y )) acts regularly on W . After possibly shrinking Y 0, we may assume
that W 0 := τ−1(Y 0) → Y 0 is a finite, flat Galois covering. Let X ′ → X ×Y W be the normalization
morphism:

X

f

��

X ′τ ′
��

g

��
Y W

τ��

We claim that X ′ → X×Y W is an isomorphism above W 0. Indeed, restricted to Y 0, f is smooth
on a big open subset and τ ′ is finite, hence X ×Y W |W 0 → W 0 is smooth on a big open subset of
X ×Y W |W 0. Since W is nonsingular, the singular locus of X ×Y W |W 0 has codimension at least 2.
Furthermore, X×Y W |W 0 is S2 since X×Y W |W 0 → X|Y 0 is finite and flat, and X is S2 (see [Mat80,
21.B Theorem 50]).

(3) By finite base change, f : (X,B) → Y induces an lc-trivial fibration g : (X ′, BX′) → W , with
discriminant BW and moduli b-divisor M′ ∼Q τ∗M ∼Q 0. Set B′ := BX′ − g∗(BW ). From above,
we obtain

g(Supp(B′)) ∩ W 0 = ∅ and B′
W = 0.

The lc-trivial fibration g : (X ′, B′) → W satisfies the assumptions of Proposition 4.4, which gives
an isomorphism over W 0:

(X ′, BX′)|W 0

g


�����������

Φ �� (F,BF ) × W 0

p
�������������

W 0

The Galois group G = Gal(W 0/Y 0) acts regularly on W 0 and X ′|W 0 = X|Y 0 ×Y 0 W 0, and g is
G-invariant. We have an induced action of G on (F,BF )×W 0 so that Φ is a G-invariant isomorphism.

(4) Let H be the subgroup of G generated by the ramification groups I(P ), for every prime
divisor P of W 0. Then

σ′ = idF × σ for σ ∈ H,

where σ′ is the automorphism of (F,BF )×W 0 induced by σ. Indeed, σ′ ◦(idF ×σ)−1 is an automor-
phism of (F,BF )×W 0 over W 0, inducing a morphism sσ : W 0 → Aut(F,BF ). For σ ∈ I(P ), we have
sσ(P ) = {idF }. Therefore sσ maps W 0 into the connected component of the identity Aut0(F,BF ).
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We have sσ(w) · ϕ(x ×Y σ−1w) = ϕ(x ×Y w), where Φ(x ×Y w) = (ϕ(x ×Y w), w). The sections
sσ satisfy the identity

sση(w) = sσ(w) ◦ sη(σ−1w), for σ, η ∈ H,w ∈ W 0.

Therefore they define a 1-cocycle ξ = {sσ}σ∈H ∈ H1(H,A(W 0)), where A(W 0) is the group of
sections of Aut0(F,BF ) × W 0 over W 0. The H-module Aut0(F,BF ) is commutative by Proposi-
tion 4.6, hence ξ has finite order by [Ser95]. After possibly changing the trivialization, sσ is trivial
for every σ ∈ H.

(5) We have a base change diagram

(X,B)|Y 0

f

��

(F,BF ) × W ′

p′

��

�� (F,BF ) × W 0��

p

��
Y 0 W ′�� W 0��

where W ′ = W 0/H. The covering W ′ → Y 0 is étale Galois and Gal(W ′/Y 0) acts on W ′ and
(F,BF ) × W ′ without fixed points.

The normalization of Y in the field k(W ′) satisfies the required properties.

Theorem 4.8. Let (X,B) be a projective log variety with Kawamata log terminal singularities
such that K + B ∼Q 0. Then:

(i) the Albanese map X → Alb(X) is a surjective morphism, with connected fibers;

(ii) there exist a finite étale covering A′ → Alb(X), a projective log variety (F,BF ), and an
isomorphism over A′ such that

(F,BF ) × A′ ∼−→ (X,B) ×Alb(X) A′.

Proof. (i) Let X
f→ Y

π→ A = Alb(X) be the Stein factorization of αX . Since f is a contraction
and K + B ∼Q 0, f : (X,B) → Y is an lc-trivial fibration with

KY + BY + MY ∼Q 0.

Since π is finite on its image, any resolution of Y has nonnegative Kodaira dimension [Uen75,
Theorem 10.3]. Therefore KY is Q-linearly equivalent to an effective Q-Weil divisor. Moreover, BY

is effective since B is effective, and MY is Q-linearly equivalent to an effective Q-Weil divisor since
κ(M) � 0. Therefore KY ∼Q 0, BY = 0 and MY ∼Q 0. The latter implies M ∼Q 0, since M is
b-nef and good.

By inversion of adjunction, Y has Kawamata log terminal singularities and KY ∼Q 0.
The index one cover Ỹ → Y has canonical singularities and KỸ ∼ 0. Therefore Ỹ , hence Y ,
map onto A by [Uen75, Theorem 10.3]. The finite map π : Y → A is étale in codimension 1 since
0 � R = KY − τ∗(KA) ∼Q 0. Since A is nonsingular, π is étale everywhere. In particular, Y is an
Abelian variety. Therefore π is an isomorphism, by the universality of the Albanese map.

(ii) We have an lc-trivial fibration αX : (X,B) → A with BA = 0 and M ∼Q 0. By Theorem 4.7,
there exists a finite morphism τ : A′ → A, étale in codimension 1, from a normal variety A′ such
that (X,B)×A A′ is isomorphic to (F,BF )×A′ over the generic point of A′. Since A is nonsingular,
τ is étale everywhere. Since BA = 0 and A′ is nonsingular, we get an isomorphism (X,B)×A A′ →
(F,BF ) × A′ by Proposition 4.4.
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