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Abstract. We reduce the Abundance Conjecture in dimension 4 to the following numerical
statement: if the canonical divisor K is nef and has maximal nef dimension, then K is big. From
this point of view, we classify in dimension 2 nef divisors which have maximal nef dimension,
but which are not big.
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0. Introduction

A minimal model is a complex projective variety X with at most canonical singu-
larities, whose canonical divisor K is numerically effective (nef): K · C ≥ 0 for
every curve C ⊂ X. Up to dimension three, minimal models have a geometrical
characterization (Kawamata [9,12], Miyaoka [14–16]) :

Abundance Conjecture. [11] Let X be a minimal model. Then the linear system
|kK| is base point free, for some positive integer k.

In dimension four, it is enough to show that X has positive Kodaira dimension
if K is not numerically trivial (Kawamata [9], Mori [17]).

A direct approach is to first construct the morphism associated to the expected
base point free pluricanonical linear systems:

f : X → Proj(⊕k≥0H
0(X, kK)).

Since K is nef, f can be characterized numerically: it is the unique morphism
with connected fibers which contracts exactly the curves C ⊂ X with K · C = 0.
Tsuji [24] and Bauer et al [2] have recently solved this existence problem biration-
ally: for any nef divisor D on X, there exists a rational dominant map f : X ��� Y

such that f is regular over the generic point of Y and a very general curve C is
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contracted by f if and only if D · C = 0. This rational map is called the nef
reduction of D, and n(X, D) := dim(Y ) is called the nef dimension of D. The
nef reduction map is non-trivial, except for the two extremal cases:

(i) n(X, K) = 0: K is numerically trivial in this case [2], and Abundance is
known (Kawamata [10]).

(ii) n(X, K) = dim(X): K · C > 0 for very general curves C ⊂ X. The nef
reduction map is birational, and we say that K has maximal nef dimension.

Our main result is that Abundance holds for a minimal model X if the nef
reduction map is non-trivial and the Log Minimal Model Program and Log Abun-
dance hold in dimension n(X, K). The latter two conjectures are known to hold
up to dimension three (Shokurov [21], Keel, Matsuki, McKernan [13]), hence we
obtain

Theorem 0.1. Let X be a minimal model with n(X, K) ≤ 3. Then the linear
system |kK| is base point free for some positive integer k.

The Base Point Free Theorem (Kawamata, Shokurov [11]) states that Abun-
dance holds if the canonical class K is big. As a corollary of Theorem 0.1, we
obtain that the 4-dimensional case of the Abundance Conjecture is equivalent to
the following

Conjecture 0.2. Let X be a minimal 4-fold. If K · C > 0 for very general curves
C ⊂ X, then K is big.

We stress that this statement is numerical: since K is nef, K is big if and only
if Kdim(X) > 0. For this reason, it is important to investigate how far are (adjoint)
divisors of maximal nef dimension from being big. Questions of similar type have
appeared in the literature: a divisor D is strictly nef (Serrano [20]) if D · C > 0
for every curve C ⊂ X. Up to dimension 3, it is known that ±K is strictly nef
if and only if ±K is ample (see [20,25] and the references there). We point out
that Conjecture 0.2 is false for the anti-canonical divisor −K (which, at least in
dimension two, is the only exception below):

Theorem 0.3. Let X be a smooth projective surface. Assume that D is a nef Car-
tier divisor of maximal nef dimension, which is not big. Then exactly one of the
following cases occurs:

(1) The divisor K + tD is big for t > 2.
(2) There exists a birational contraction f : X → Y and there exists t ∈ (0, 2]

such that D = f ∗(DY ) and KY + tDY ≡ 0. Moreover, D is effective up
to algebraic equivalence. In Sakai’s classification table [18], Y is either a
degenerate Del Pezzo, or an elliptic ruled surface of type IIc, I I ∗

c .
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Theorem 0.1 is proved in several steps. The properties of the nef reduction map
f and the numerically trivial case of Abundance [10] imply that f is birational
to a parabolic fiber space f ′ : X′ → Y ′, and the canonical class K descends to
a divisor P on Y ′. After an idea of Fujita [6], it is enough to show that P is the
semi-positive part in the Fujita decomposition associated to a log variety (Y ′, �):
the semi-ampleness of P follows then from the Log Minimal Model Program
and Log Abundance applied to (Y ′, �). The key ingredient in this argument is
an adjunction formula for the parabolic fiber space f ′ (Kawamata [8,10], Fujino,
Mori [4,10]), similar to Kodaira’s formula for elliptic surfaces. We expect that the
logarithmic version of Theorem 0.1 follows from the same argument, provided
that Kawamata’s adjunction formula [8] is extended to the logarithmic case (see
also Fukuda [7]).

Finally, Theorem 0.3 follows from the classification of surfaces and general-
izes a result of Serrano [20].

Acknowledgements. This work was supported through a European Community Marie Curie
Fellowship.

1. Preliminary

A variety is a reduced and irreducible separable scheme of finite type, defined
over an algebraically closed field of characteristic zero. A contraction is a proper
morphism f : X → Y such that OY = f∗OX.

1-A. Divisors

Let X a normal variety, and let L ∈ {Z, Q, R}. An L-Weil divisor is an element
of Z1(X) ⊗Z L. Two R-Weil divisors D1, D2 are L-linearly equivalent, denoted
D1 ∼L D2, if there exist qi ∈ L and rational functions ϕi ∈ k(X)× such that
D1 − D2 = ∑

i qi(ϕi). An R-Weil divisor D is called

(i) L-Cartier if D ∼L 0 in a neighborhood of each point of X.
(ii) nef if D is R-Cartier and D · C ≥ 0 for every curve C ⊂ X.

(iii) ample if X is projective and the numerical class of D belongs to the real
cone generated by the numerical classes of ample Cartier divisors.

(iv) semi-ample if there exists a contraction � : X → Y and an ample R-divisor
H on Y such that D ∼R �∗H . If D is rational, this is equivalent to the linear
system |kD| being base point free for some k.

(v) big if there exists C > 0 such that dim H 0(X, kD) ≥ Ckdim(X) for k suffi-
ciently large and divisible. By definition,

H 0(X, kD) = {a ∈ k(X)×; (a) + kD ≥ 0} ∪ {0}.
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The Iitaka dimension of D is κ(X, D) = maxk≥1 dim �|kD|(X), where �|kD| :
X ��� P(|kD|) is the rational map associated to the linear system |kD|. If all
the linear systems |kD| are empty, κ(X, D) = −∞. If D is nef, the numerical
dimension ν(X, D) is the largest non-negative integer k such that there exists a
k-dimensional cycle C ⊂ X with Dk · C �= 0.

1-B. B-divisors (V.V. Shokurov [22,23])

An L-b-divisor D of X is a family {DX′ }X′ of L-Weil divisors indexed by all bi-
rational models of X, such that µ∗(DX′′) = DX′ if µ : X′′ → X′ is a birational
contraction.

Equivalently, D = ∑
E multE(D)E is a L-valued function on the set of all

geometric valuations of the field of rational functions k(X), having finite support
on some (hence any) birational model of X.

Example 1. (1) Let ω be a top rational differential form of X. The associated
family of divisors K = {(ω)X′ }X′ is called the canonical b-divisor of X.

(2) A rational function ϕ ∈ k(X)× defines a b-divisor (ϕ) = {(ϕ)X′ }X′ .
(3)An R-Cartier divisor D on a birational model X′ of X defines an R-b-divisor

D such that (D)X′′ = µ∗D for every birational contraction µ : X′′ → X′.

An R-b-divisor D is called L-b-Cartier if there exists a birational model X′ of
X such that DX′ is L-Cartier and D = DX′ . In this case, we say that D descends to
X′. An R-b-divisor D is b-nef (b-semi-ample, b-big, b-nef and good) if there exists
a birational contraction X′ → X such that D = DX′ and DX′ is nef (semi-ample,
big, nef and good).

1-C. Log pairs

A log pair (X, B) is a normal variety X endowed with a Q-Weil divisor B such
that K +B is Q-Cartier. A log variety is a log pair (X, B) such that B is effective.
The discrepancy Q-b-divisor of a log pair (X, B) is the Q-b-divisor of X defined
by

A(X, B) = K − K + B.

More precisely, fix a top rational differential form ω ∈ ∧dim(X)�1
k(X)/k with K =

(ω)X. For a birational contraction µ : Y → X, the Weil divisor (ω)Y is a canoni-
cal divisor of Y . Then A(X, B)Y is the unique Q-Weil divisor on Y such that the
following adjunction formula holds:

µ∗((ω)X + B) = (ω)Y − A(X, B)Y .
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It is easy to see that A(X, B) is independent of the choice of ω and in fact it
is independent of the choice of the canonical divisor K in its linear equivalence
class.

A log pair (X, B) is said to have at most Kawamata log terminal singulari-
ties if multE(A(X, B)) > −1 for every geometric valuation E. A log variety X

has canonical singularities if multE(A(X)) ≥ 0 for every geometric valuation E

which is exceptional on X.

2. Nef reduction

The existence of the nef reduction map is originally due to Tsuji [24].An algebraic
proof of the sharper statement below is due to Bauer, Campana, Eckl, Kebekus,
Peternell, Rams, Szemberg and Wotzlaw [2].

Theorem 2.1. [24,2] Let D be a nef R-Cartier divisor on a normal projective
variety X. Then there exists a rational map f : X ��� Y to a normal projective
variety Y , satisfying the following properties:

(i) f is a dominant rational map with connected fibers, which is a morphism
over the general point of Y .

(ii) There exists a countable intersection U of Zariski open dense subsets of X

such that for every curve C with C ∩ U �= ∅, f (C) is a point if and only if
D · C = 0.

Moreover, D|W ≡ 0 for general fibers W of f .

The rational map f is unique, and is called the nef reduction of D. The dimen-
sion of Y is called the nef dimension of D, denoted by n(X, D). In general, the
following inequalities hold [9,2]:

κ(X, D) ≤ ν(X, D) ≤ n(X, D) ≤ dim(X).

Definition 2.2. A nef Q-Cartier divisor D is called good if

κ(X, D) = ν(X, D) = n(X, D).

Remark 2.3. This is equivalent to Kawamata’s definition [9]. If

κ(X, D) = ν(X, D),

there exists a dominant rational map f : X ��� Y and a nef and big Q-divisor H

on Y such that D ∼Q f ∗(H), by [9]. In particular, n(X, D) coincides with the
Iitaka and the numerical dimension in this case.

Remark 2.4. [2] The extremal values of the nef dimension are:

(i) n(X, D) = 0 if and only if D is numerically trivial (ν(X, D) = 0).
(ii) n(X, D) = dim(X) if and only if there exists a countable intersection U of

Zariski open dense subsets of X such that D · C > 0 for every curve C with
C ∩ U �= ∅.
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3. Fujita decomposition

Definition 3.1. [6] An R-Cartier divisor D on a normal proper variety X has a
Fujita decomposition if there exists a b-nef R-b-divisor P of X with the following
properties:

(i) P ≤ D.
(ii) P = sup{H; H b-nef R-b-divisor, H ≤ D}.

The R-b-divisor P = P(D) is unique if it exists, and is called the semi-positive
part of D. The R-b-divisor E = D − P is called the negative part of D, and
D = P + E is called the Fujita decomposition of D.

Remark 3.2. Allowing divisors with real coefficients is necessary: there exist Car-
tier divisors (in dimension at least 3) which have a Fujita decomposition with
irrational semi-positive part [3].

Clearly, a nef R-Cartier divisor D has a Fujita decomposition, with semi-
positive part D. More examples can be constructed using the following property:

Proposition 3.3. [6] Let f : X → Y be a proper contraction, let D be an R-Car-
tier divisor on Y and let E be an effective R-Cartier divisor on X such that E is
vertical and supports no fibers over codimension one points of Y .

Then D has a Fujita decomposition if and only if f ∗D + E has a Fujita
decomposition, and moreover, P(f ∗D + E) = f ∗(P(D)).

Lemma 3.4. Assume LMMP and Log Abundance. Let (X, B) be a log variety with
log canonical singularities. Then K + B has a Fujita decomposition if and only
if κ(X, K + B) ≥ 0, and the semi-positive part is semi-ample. Moreover,

P(K + B) = KY + BY ,

for a log minimal model (Y, BY ).

Proof. If K + B is nef, it has a Fujita decomposition with semi-positive part
K + B. By Log Abundance, it is semi-ample. If K + B is not nef, we run the
LMMP for (X, B). We may assume that X is Q-factorial by Proposition 3.3. If
f : (X, B) → Y is a divisorial contraction, then

K + B = f ∗(KY + BY ) + αE,

where E is exceptional on Y and α > 0. Thus K + B has a Fujita decom-
position if and only if KY + BY has, and the semi-positive parts coincide. If
t : (X, B) ��� (X+, BX+) is a log-flip, then

K + B = KX+ + BX+ + E,
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where E is an effective Q-b-divisor which is exceptional on both X and X′. There-
fore K + B has a Fujita decomposition if and only if KX+ + BX+ has, and the
semi-positive parts coincide.

If f : (X, B) → Y is a log Fano fiber space, K + B admits no Fujita decom-
position. ��

Lemma 3.5. [9,6] Let f : X → Y be a contraction of normal proper varieties,
and let D be a nef R-divisor on X which is vertical on Y . Then there exists a b-nef
R-b-divisor D of Y such that D = f ∗D.

Proof. After a resolution of singularities, Hironaka’s flattenining and the normal-
ization of the total space of the induce fibration, we have a fiber space induced by
birational base change

X

f

��

X′

f ′
��

µ��

Y Y ′��

such that f ′ is equi-dimensional, X′ is normal and Y ′ is non-singular, and µ∗D
is vertical on Y ′. Let D′ be the largest R-divisor on Y ′ such that f ′∗D′ ≤ µ∗D.
Since f ′ is equi-dimensional, E = µ∗D − f ′∗D′ is effective and supports no
fibers over codimension one points of Y ′. Furthermore, E is f ′-nef since D is nef.
By [6, Lemma 1.5], E = 0. Therefore µ∗D = f ′∗(D′). In particular, D′ is nef
and D = D′ satisfies the required properties. ��

4. Parabolic fiber spaces

We recall results of Kawamata [8,10] and Fujino, Mori [4,5] on adjunction for-
mulas of Kodaira type for parabolic fiber spaces. These results are best expressed
through Shokurov’s terminology of b-divisors. With a view towards the logarith-
mic case, we introduce them via lc-trivial fibrations.

Definition 4.1. [1] An lc-trivial fibration f : (X, B) → Y consists of contraction
of normal varieties f : X → Y and a log pair (X, B), satisfying the following
properties:

(1) (X, B) has Kawamata log terminal singularities over the generic point of Y .
(2) rank f∗OX(�A(X, B)�) = 1.
(3) There exist a positive integer r , a rational function ϕ ∈ k(X)× and a Q-Cartier

divisor D on Y such that

K + B + 1

r
(ϕ) = f ∗D.
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A parabolic fiber space is a contraction of non-singular proper varieties f : X →
Y such that the generic fiber F has Kodaira dimension zero. Let b be the smallest
positive integer with |bKF | �= ∅. We fix a rational function ϕ ∈ k(X)× such that
K + 1

b
(ϕ) is effective over the generic point of Y .

Lemma 4.2. Let f : X → Y be a parabolic fiber space. Then there exists a unique
Q-divisor BX on X satisfying the following properties:

(i) KX + BX + 1
b
(ϕ) = f ∗D for some Q-divisor D on Y .

(ii) There exists a big open subset Y † ⊆ Y such that −BX|f −1(Y †) is effective and
contains no fibers of f in its support.

In particular, f : (X, BX) → Y is an lc-trivial fibration.

Proof. See [4] for the existence and uniqueness of BX. It remains to verify that
f : (X, BX) → Y is an lc-trivial fibration. The adjunction formula (3) is exactly
(i). Let (F, BF ) be the induced log pair structure on a general fibre F of f . Since
F is smooth and BF ≤ 0, it is clear that (F, BF ) has Kawamata log terminal
singularities, i.e. (1) holds.

As for (2), note first that given a resolution of singularities µ : X′ → X, the
induced fibration X′ → Y is also parabolic and µ∗(KX + BX) = KX′ + BX′ .
Therefore we may assume that BF has simple normal crossings support, in which
case (2) becomes

dim H 0(F, �−BF �) = 1.

Since 0 ≤ −BF ≤ �−BF �, we have dim H 0(F, �−BF �) ≥ 1. Since F has zero
Kodaira dimension and −BF ∼Q KF , we infer κ(F, −BF ) = 0. The effectivity
of −BF implies that there exists a positive rational number t such that −BF ≤
�−BF � ≤ t (−BF ). Thereforeκ(F, �−BF �) = 0, hence dim H 0(F, �−BF �) ≤ 1.

We conclude that (2) holds. ��
Definition 4.3. Let f : X → Y be a parabolic fiber space with a choice of
a rational function ϕ, as above. The moduli Q-b-divisor of f , denoted M =
M(f, ϕ), is the moduli Q-b-divisor of the lc-trivial fibration f : (X, BX) → Y .

If ϕ′ is another choice of the rational function, then bM(f, ϕ) ∼ bM(f, ϕ′).
Therefore bM is uniquely defined up to linear equivalence. According to the fol-
lowing Lemma, M is independent of birational changes of f :

Lemma 4.4. Consider a commutative diagram

X

f

��

X′ν��

f ′
��

Y Y ′µ��

where f, f ′ are parabolic fiber spaces and µ, ν are birational contractions. Then
M(f ) = M(f ′).
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Proof. Assume first that µ is the identity morphism. Since X, X′ are nonsingular,
it is easy to see that A(X, BX) = A(X′, BX′). Therefore M(f ) = M(f ′).

We are left with the case when ν is the identity morphism. Let B
(Y)
X and B

(Y ′)
X

be the Q-divisors induced by f and f ′, respectively. Since the general fiber is
non-singular of zero Kodaira dimension, there exists a Q-divisor C on Y ′ such
that B

(Y ′)
X = B

(Y)
X + f ′∗C. Therefore M(f ) = M(f ′), by [1, Remark 3.3]. ��

Theorem 4.5. Let f : X → Y be a parabolic fiber space.

(1) Consider a commutative diagram

X

f

��

X′ν��

f ′
��

Y Y ′	��

where 	 is a proper surjective morphism, and f ′ is an induced parabolic fiber
space. Then 	∗M(f ) ∼Q M(f ′).

(2) If f is semi-stable in codimension one, then

f∗OX(iKX/Y )∗∗ = OY (iMY ) · ϕ
i
b , for b|i.

(3) The moduli Q-b-divisor M(f ) is b-nef.

The key result of this section is the following corollary of [10, Theorem 3.6]:

Theorem 4.6. Let f : X → Y be a parabolic fiber space. Assume that its geo-
metric generic fiber X ×Y Spec(k(Y )) is birational to a normal variety F̄ with
canonical singularities, defined over k(Y ), such that KF̄ is semi-ample. Then the
moduli Q-b-divisor M(f ) is b-nef and good.

Proof. From the definition of the variation of a fiberspace, there exists a commu-
tative diagram

X

f

��

X̄��

f̄

��

�� X!

f !

��
Y Ȳ

τ�� 	 �� Y !

such that the folowing hold:

(1) f̄ and f ! are parabolic fiber spaces.
(2) τ is generically finite, and 	 is a proper dominant morphism.
(3) f̄ is birationally induced via base change by both f and f !.
(4) Var(f ) = Var(f !) = dim(Y !).
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Let M, M̄, M! be the corresponding moduli Q-b-divisors. After a generically
finite base change, we may also assume that M! descends to Y !, and f ! is semi-
stable in codimension one. By (3) and Theorem 4.5, we have

τ ∗M = M̄ ∼Q 	∗(M!).

In particular, κ(M) = κ(M!). Since F̄ is a good minimal model, Viehweg’s Q(f !)

Conjecture holds [10, Theorem 1.1.(i)], that is the sheaf (f !
∗(ω

⊗i

X!/Y !))
∗∗ is big for

i large and divisible. But (f !
∗(ω

⊗i

X!/Y !))
∗∗ � OY !(iM!

Y !) for b|i, since f ! is semi-

stable in codimension one. Equivalently, κ(Y !, M!
Y !) = dim(Y !), or M! is b-nef

and big. Therefore τ ∗M is b-nef and good, hence M is b-nef and good. ��

5. Reduction argument

Theorem 5.1. Let X be a projective variety with canonical singularities such that
the canonical divisor K is nef. If n(X, K) ≤ 3, then the canonical divisor K is
semi-ample.

Proof. Let � : X ��� Y be the quasi-fibration associated to the nef canonical
divisor K of X, and let � be the normalization of the graph of �:

�
µ

����
��

��
�

f

���
��

��
��

X Y

Since � is a quasi-fibration, µ is birational, f is a contraction and Exc(µ) ⊂ �

is vertical over Y . Let W be a general fiber of f .
Step 1: W is a normal variety with canonical singularities, and KW ∼Q 0.

Indeed, W has canonical singularities and KW = µ∗K|W . The definition of �

implies that KW is numerically trivial. From [10, Theorem 8.2], we conclude that
KW ∼Q 0.

Step 2: There exist a diagram

X X′µ��

f ′
��

Y ′

satisfying the following properties:

(a) µ is a birational contraction.
(b) f ′ : X′ → Y ′ is a parabolic fiber space.
(c) There exists a simple normal crossings divisor � on Y ′ such that f ′ is smooth

over Y ′ \ �.
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(d) The moduli Q-b-divisor M = M(f ′) descends to Y ′ and there exists a contrac-
tion h : Y ′ → Z and a nef and big Q-divisor N on Z such that MY ′ ∼Q h∗N .

(e) Let E be any prime divisor on X′. If E is exceptional over Y ′, then E is
exceptional over X.

Indeed, we may assume that Y is non-singular. Let �′ → � be a resolution of
singularities, and let f0 : �′ → Y be the induced contraction. The general fiber
of f0 is birational to the general fiber of f . The latter is a normal variety W with
canonical singularities, and KW ∼Q 0. Therefore f0 is a parabolic fiber space.
We define f ′ : X′ → Y ′ to be a parabolic fiber space induced after a sufficiently
large birational base change Y ′ → Y . By Theorem 4.6, the moduli Q-b-divisor
M(f ) = M(f0) satisfies (d) once Y ′ dominates a certain resolution of Y . Also,
(e) holds once f ′ dominates a flattening of f , and (b) follows from Hironaka’s
embedded resolution of singularities.

Step 3: There exists an effective Q-divisor � on Y ′ such that (Y ′, �) is a log
variety with Kawamata log terminal singularities, KY ′ + � has a Fujita decom-
position and K ∼Q f ′∗(P(KY ′ + �)).

Indeed, the parabolic fiber space f ′ induces an lc-trivial fibration (X′, BX′) →
Y ′, with associated discriminant divisor BY ′ . We have

KX′ + BX′ + 1

b
(ϕ) = f ′∗(KY ′ + BY ′ + MY ′).

It is clear that BY ′ is effective, �BY ′ � = 0 and Supp(BY ′) ⊆ �. Therefore (Y ′, BY ′)
is a log variety with Kawamata log terminal singularities. By (d), there exists an
effective Q-divisor � on Y ′ such that (Y ′, �) is a log variety with Kawamata log
terminal singularities, and � ∼Q BY ′ + MY ′ . In particular,

KX′ + BX′ ∼Q f ′∗(KY ′ + �).

Let µ∗K = KX′ − A and let BX′ = E+ − E− be the decomposition into positive
and negative parts. It is clear that A is effective and exceptional over X, and A−E−

is vertical on Y . Thus there exist effective Q-divisors A′ ≤ A and E′ ≤ E− such
that A−E− = A′ −E′ and E′ is vertical and supports no fibers over codimension
one points of Y ′. In particular,

µ∗K + A′ + E+ ∼Q f ′∗(KY ′ + �) + E′.

By (e), the left hand side has a Fujita decomposition, with semi-positive part K .
Proposition 3.3 applies, hence KY ′ + � has a Fujita decomposition and K ∼Q

f ′∗(P(KY ′ + �)).
Step 4: From the LMMP and Abundance applied to the log variety (Y ′, �),

the semi-positive part of KY ′ +� is b-semi-ample. Therefore K is b-semi-ample,
that is K is a semi-ample Q-divisor. ��
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6. Divisors of maximal nef dimension which are not big

We prove Theorem 0.3 in this section. We fix the notation: X is a smooth projective
surface and D is a nef Cartier divisor which has maximal nef dimension, but it is
not big. We denote by K the canonical divisor of X.

Proposition 6.1. The following hold:

(1) κ(X, D) ≤ 0, ν(X, D) = 1.
(2) D · K ≥ 0.
(3) If D · K = 0, one of the following holds:

a) κ(X, D) = −∞ and X is birational to PC(E), where C is a non-rational
curve.

b) κ(X, D) = 0 and X is either a rational surface, or an elliptic ruled surface.
(4) Assume D · K = 0 and K2 ≥ 0. Then D is algebraically equivalent to an

effective divisor.

Proof. Since D cannot be good, (1) holds. We have

χ(X, mD) = −D · K

2
m + χ(OX).

Since ν(X, D) > 0, h2(mD) = h0(K − mD) = 0 for m � 0.
(2) If D · K < 0, then κ(X, D) ≥ 1. This contradicts (1).
(3) Assume D ·K = 0. In particular, κ(X) ≤ 0. Indeed, let L be a divisor such

that DL = 0. Since D is nef, D is orthogonal on the irreducible components of
all divisors in |mL|, m ≥ 0. Since D is orthogonal on at most a countable number
of curves, κ(X, L) ≤ 0.

Assume κ(X) = 0. Let σ : X → X′ be the birational contraction to a min-
imal model. Since KX′ ∼Q 0, K ∼Q E where E is effective and Supp(E) =
Exc(σ ). Since D · K = 0, D is orthogonal on each exceptional divisor, hence
D = σ ∗(DX′). Thus we may assume X is a minimal model. After an étale cover,
X is an Abelian surface or a K3 surface. If X is an Abelian surface, D is big
by the same argument as in [20, Proposition 1.4]. Contradiction. If X is a K3
surface, h0(X, mD) = h1(X, mD) + 2 by Riemann-Roch, hence κ(X, D) ≥ 1.
Contradiction.

Therefore κ(X) = −∞. Riemann-Roch gives

h0(X, mD) = h1(X, mD) + 1 − q(X), m ≥ 1

If q(X) = 0, then h0(D) > 0. We are in case (b), and the rest of the claim is well
known (see [19]). Assume q(X) > 0. Then there exists a birational contraction
X → X′ = PC(E), with q(X) = g(C) ≥ 1. We are in case (a).

(4) If q(X) = 0, |D| �= ∅ by Riemann-Roch. Assume q(X) > 0. There
exists a birational contraction X → X′ = PC(E), with q(X) = g(C). Since
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0 ≤ K2
X ≤ K2

X′ = 8(1−q(X)) ≤ 0, we infer that X = PC(E) and C is an elliptic
curve, i.e. q(X) = 1.

If h1(D + Ft − F0) > 0 for some t ∈ C, then h0(D + Ft − F0) > 0 by Rie-
mann-Roch. Assume h1(D+Ft −F0) = 0 for every t ∈ C. Since D is of maximal
nef dimension, D · F0 > 0. Therefore h0(F0, D|F0) > 0. By [20], Proposition
1.5, D is algebraically equivalent to an effective divisor. ��
Theorem 6.2. [19] In the case (3b) above, assume moreover that D is effective
and DC > 0 for every (−1)-curve C of X. Then the pair (X, D) is classified as
follows:

(i) X is a rational surface such that −K is nef and K2 = 0. There exists a
connected effective cycle

∑
niCi ∈ | − K| such that the greatest common

divisor of the ni’s is 1. Also, D = m
∑

niCi for some positive integer m.
(ii) X = PC(E) is a geometrically ruled surface over an elliptic curve C, of type

IIc or II ∗
c in Sakai’s classification table:

a) E = OC ⊕ OC(d) with d ∈ Pic0(C) non-torsion. Let C ′ be the section
with C ′ ∼ C0 − π∗d. Then K + C0 + C ′ = 0 and D = d0C0 + d ′C ′.

b) E is an indecomposable extension of OC by OC , K + 2C0 = 0 and
D = d0C0.

Proof. (of Theorem 0.3) Contracting all (−1)-curves on which D is numerically
trivial, we obtain a birational contraction f : X → Y such that D = f ∗(DY ) and
A = K − f ∗(KY ) is effective, exceptional on Y .

In particular,

κ(X, K + tD) = κ(Y, KY + tDY ) for t ∈ R.

By construction, DY is positive on every KY -negative extremal ray of Y . Note
that Y is not a Del Pezzo surface: otherwise DY is semi-ample, hence good, by
the Base Point Free Theorem [11]. Therefore −KY · R ≤ 1 for every KY -nega-
tive extremal ray R of Y . Moreover, DY · R ≥ 1 since DY is Cartier. Therefore
KY + tDY is nef for t ≥ 2.

In particular,

(KY + tDY )2 = K2
Y + 2(KY · DY )t + (D2

Y )t2 ≥ 0 for t ≥ 2.

Therefore either (KY + tDY )2 > 0 for t > 2 (case (1)), or K2
Y = KY ·DY = D2

Y =
0. Assume the latter holds. By Proposition 6.1.(4), DY is algebraically equivalent
to an effective divisor D′. The pairs (Y, D′) are classified by Theorem 6.2. Exactly
one of the following holds:

(i) Y is a rational surface and there exists m ∈ N such that KY + 1
m
DY ≡ 0.

(ii) Y = PC(E), where C is an elliptic curve and deg(E) = 0, and KY +tDY ≡ 0
for some 0 < t ≤ 2.

��
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